论文部分内容阅读
胰高血糖素样多肽-1(GLP-1)是由肠道L细胞合成和分泌的由30个氨基酸组成的多肽。体内外研究显示GLP-1具有增强葡萄糖依赖性的胰岛素分泌、减少食物的摄取、减慢胃的排空、以及抑制胰高血糖素的分泌、刺激胰β细胞增殖、促进胰岛再生、以及抑制胰β细胞的凋亡等功能,且无胰岛素和磺脲类降糖药物的低血糖危险。GLP-1独特的降血糖作用机制,是现有抗糖尿病药物无可比拟的。但在体内其极易被二肽酰基肽酶Ⅳ降解,限制了GLP-1药物化的进展,本论文主要围绕GLP-1的长效性研究展开,主要结论如下:利用PCR的方法克隆获得GLP-1及其突变体GLP-1A2G的基因,并构建了大肠杆菌表达菌株BL21 (pGEX-4T-1-GLP-1)和BL21 (pGEX-4T-1-GLP-1A2G)。SDS-PAGE显示阳性克隆在分子量29.0 kDa处有明显的表达条带,与预测的分子量大小相近。凝血酶酶切后,进一步利用GST亲和层析与分子筛G75纯化获得了目标蛋白GLP-1和GLP-1A2G。小鼠糖耐量实验证明,纯化获得的GLP-1和GLP-1A2G在小鼠体内均有良好的控制血糖的生物活性,并且生物活性基本没有差异。利用生物信息学软件InsightII、ICM pro、Amber计算得出GLP-1的突变体GLP-1A2G与其突变体的串联体(GLP-1A2G)2的合理构象,并完成了其与GLP-1受体的分子对接,主要结合氨基酸残基为V30、L32、V36、Y69和P90,大部分是脂肪族和芳杂环类氨基酸,提示四个配体与nGLP-1R间的相互作用主要为疏水作用,并且计算得出GLP-1和突变体GLP-1A2G的与受体结合能相差不大,而(GLP-1A2G)2与受体结合能大于GLP-1和突变体GLP-1A2G,说明(GLP-1A2G)2较GLP-1A2G更适合与白蛋白融合表达。利用重叠PCR技术,在体外成功拼接获得了(GLP-1A2G)2和HSA的融合基因(GGH),构建重组表达质粒pPIC9K-GGH,并将其通过电转化法转入毕赤酵母表达系统,经G418抗性筛选得到高表达菌株KM71(pPIC9K-GGH),在甲醇诱导下其表达量为162 mg/L, western-blot结果表明诱导表达的融合蛋白为GLP-1突变体和HSA的杂合分子。对高表达菌株的发酵过程进行了优化,确定了毕赤酵母KM71(pPIC9K-GGH)的最佳生长条件:温度30℃、pH 6.0、装液量50-60 mL、甘油初始浓度4.0%、蛋白胨浓度2.0%。最佳表达条件:温度30℃、pH 6.0、装液量50-60 mL、诱导甲醇浓度2.0 %。在最优的条件下,毕赤酵母KM71(pPIC9K-GGH)菌体浓度最高达到21.0 g/L、最大比生长速率达到1.70 g/L·h、目标蛋白的最高产量达到245 mg/L、最大比产物生成速率达到3.38 mg/L,并且连续5个批次发酵水平稳定,批次之间的相对误差≤5%。确定了融合蛋白GGH的分离纯化的主要步骤,即10000 r/min离心10 min,分子量10 kDa的biomax超滤膜浓缩20倍,大孔树脂DA101脱色,Q FF离子交换,Sephacryl S-200凝胶层析,整个纯化过程的回收率为50.1%。经SDS-PAGE和HPLC检测纯度大于95%,等电聚集测定等电点为4.6,符合下一步生物活性和药代动力学实验的要求。融合蛋白GGH在体外对胰岛原代细胞生长有较好的刺激作用,在浓度45 nmoL/L时增殖率为35.4%,与单体的GLP-1相差不大。在糖耐量实验中,融合蛋白GGH可以较好的控制小鼠的血糖水平,并且在给药72 h后中、高剂量组仍然有控制血糖的生物活性,而单体的GLP-1在给药4 h后就检测不到生物活性。药代动力学研究表明,融合蛋白GGH在腹腔皮下单次给药8 h左右,血药浓度达到最高,分布容积为53.4 mg/L·h,体内吸收半衰期为26.6 h,体内消除半衰期约为57.8 h。大鼠皮下注射该药后,主要脏器均于6 h达峰,小鼠的胃、肾、肺和肌肉等组织器官中单位重量放射性积聚较高,其中以胃为最高;在肠、胰腺、肝、生殖器和脂肪中单位重量的放射性活度次之,而在心和脑中的分布最少。300 h尿中平均累积排泄率为80.1%,说明肾脏是消除同位素的主要途径,间接反映出该药(包括代谢产物)主要通过肾排泄。300 h粪便中平均累积排泄率为16.0%,说明该药可部分通过粪便排泄。