论文部分内容阅读
钛合金材料因其优异的性能,成为高性能金属材料的代表,并在生物医药方面得到广泛应用。然而传统的钛合金,一方面,它们的合金元素如Ni,Al和V,具有毒性和致敏性。另一方面,它们的弹性模量仍然比人骨高,在植入弹性模量不相容的骨科植入物后,它们会导致应力遮挡,并导致植入体松动或骨折。为了克服上述问题,近年来已开发出新一代具有较低模量和较好生物相容性的无毒医用钛合金,其中Ti-24Nb-4Zr-8Sn(Ti2448)弹性模量低、强度高、耐腐蚀性能好,引起了众多学者的关注。本课题采用粉末冶金近净成形技术制备出了性能优异的Ti2448合金,研究了不同工艺制备对合金显微组织的影响,分析了密度、氧含量、析出相含量等因素,并总结了其影响机理。研究了不同工艺制备对合金力学性能的影响提出了制备低弹性模量、高强度、高塑性Ti2448合金的方法。并对合金的变形机理进行了表征分析,揭示了其性能优异的微观机理。首先,对粉末冶金烧结过程进行了研究。采用DSC分析了烧结过程中的物相变化,并分析样品的密度、氧含量差异。确定了α相到β相的相转变温度,为后续热处理工艺提供理论基础。采用不同压制压力得到不同密度的生坯,得出了试样条件下优化的压制压力为700 MPa。烧结和热处理都是在高温下进行,会导致样品的氧含量增加。其次,对不同工艺制备样品的显微组织进行了分析。由显微组织分析结果可知,烧结态合金由基体β相和针状α相组成,并且α相从β相的晶界开始析出并向晶内扩散,而且随着烧结温度的增加,α相的分布也变得更加均匀。热等静压处理的样品也是由β相和α相组成,但是α相含量增加。淬火样品的显微组织主要是β相,这是由于淬火时冷速较快,高温β相来不及转变成α相。然后,对不同工艺制备样品的力学性能进行了分析。纳米压痕试验结果可知,α相的弹性模量和硬度均高于β相。结合显微组织分析,烧结态和热等静压处理样品的断裂延伸率明显低于淬火样品,这是由于大量α相的存在导致样品脆化,尽管强度较高但牺牲了合金的塑性,也增加了弹性模量。得出试验条件下最优样品的烧结温度1400℃,淬火温度980℃,其弹性模量57.2 GPa,断裂应变率19.33%,极限拉伸强度725 MPa。最后,对最优工艺参数样品的变形机理进行了表征,采用AFM、SEM、TEM对拉伸试验前和拉伸试验之后样品的表面形貌、显微组织、元素分布、物相等进行了分析。实验结果表明,在拉伸过程中发生的马氏体相变是导致样品尽管制造工艺简单但是弹性模量低、塑性好的原因,尤其是其在不牺牲太多强度的基础上展现出来高塑性。