论文部分内容阅读
进行深入而详细的地球物理勘探是急需的,也是必要的,一方面,进行地球物理勘探能够帮助人类掌握地下矿产资源的分布,另一方面,能够有效预警各类地质灾害。勘探范围广,采样通道空间密度高是当今大规模地球物理勘探数据采集系统的发展趋势之一。采样通道数空间密度的提高,使得地球物理勘探的分辨率信噪比,保真度均得到提高。在传统的大规模地球物理勘探数据采集系统中,由于采集站与数据中心之间的联系过于紧密,采样通道数扩展时,对数据中心的性能要求也会提高,这成为了系统扩展的瓶颈。本文在分析采样通道数扩展对数据采集系统管理能力,存储能力和授时能力的要求的基础上,提出一种具有分布式管理能力,分布式存储能力和分布式授时能力的大规模地球物理勘探数据采集系统,使得系统在具有良好采样通道数扩展性的同时,具有高可靠性和高灵活性。在可扩展的大规模地球物理勘探数据采集系统中,电源站除具有电源管理这一基本功能外,还具有分布式管理能力,分布式存储能力和分布式授时能力,为采集站进行数据采集提供了完备的条件。将电源站与采集站封装在一起,成为新系统的基本单元,使得新系统的基本单元具有良好的独立性,不再依赖于数据中心。在此基础上,各级站体均具有一定的管理能力和存储能力。在系统扩展的同时,整个系统的管理能力,存储能力和授时能力也会相应提高,使得系统具有良好的扩展性,可靠性和灵活性。本论文共分为以下五章:第一章为绪论,阐述了大规模地球物理勘探数据采集系统采样通道数扩展的发展趋势,分析了传统数据采集系统中,采集通道数受制于数据中心性能的原因。设计一种可扩展的大规模地球物理勘探数据采集系统,能够为地球物理勘探的后期数据处理提供信噪比高,保真度高的采样数据,从而提高勘探的探测深度和分辨率。第二章阐述了采集系统设计过程中运用到的设计思想,和实现采样通道数扩展的方法。根据采样通道在勘探区域内的分布情况,提出了域的概念,通过赋予系统分布式管理能力,分布式存储能力和分布式授时能力,使得系统各个域能够独立完成数据采集工作,使得数据中心面向的对象成为整个系统,使系统采样通道数不再受数据中心性能的制约。第三章详细阐述了可扩展的地球物理勘探数据采集原型系统中,线缆及各类站体的具体硬件实现。描述了各个站体的结构,站体内部各部分之间的接口定义和应用,以及系统数据传输的过程,系统时钟同步的过程以及电源设计。第四章介绍了采集系统已经实现的功能,并对分布式同步时钟源的精度进行了初步测试,并对测试结果进行了分析。最后是整篇论文的总结与展望,对本原型系统中尚待实现的功能以及存在的问题进行了总结,并为系统的改进和投入应用提出建议。