论文部分内容阅读
镍基高温合金优异的抗腐蚀性能、抗蠕变疲劳特征、红硬性及抗热疲劳特征,在航天航空和石油化工等条件要求苛刻领域被广泛应用。Ni元素是镍基高温合金中的基体元素,Ti作为一种重要的强化元素在提高镍基高温合金性能方面扮演着重要的角色,进入γ固溶体中的钛所占比例大约是10%,这10%的钛在高温合金中起固溶强化作用,约90%钛进入γ’相中,在铝元素一定含量的条件下,随着钛含量增加γ’相数在合金中所占比例增加,γ’相数所占比例增加能够提高高温合金在室温和高温条件下的强度。镍基高温合金熔炼过程中,合金元素的添加有两种方式:一是直接添加纯元素;另一种是添加该元素的中间合金。由于纯元素的熔点较高,在高温合金熔炼的温度范围内,直接添加的纯元素并不能迅速熔化,而是通过合金化的方式溶解到熔体中。在该过程中,Ti元素易于氧、氮相结合,如果合金熔体中有一定量的氧、氮等气体杂质元素,会迅速形成难分解的氧化物、氮化物,严重影响合金性能。而中间合金的熔点较低,若通过中间合金的方式添加,在熔炼的温度范围内,会迅速熔化并与合金熔体充分混合,避免夹杂物的形成。基于上述这些问题,本论文通过电子束熔炼制备得到初级中间合金,分析了氧、氮元素在合金基体中的分布,明确了在提纯的过程中固溶态氧、氮元素及其夹杂的去除方式,得到了精炼提纯确定成分的中间合金的最佳工艺。通过分析得到结论:Ti3Ni合金的熔点最低,较为适合作为目标合金。精炼所得铸锭表面有一层凝壳层,表面凝壳层中的物相组成主要为α-Ti,除此以外,还有少量的Ti2Ni相以及TiN、TiO2析出相产生。基体的组成为富Ni的Ti2Ni相、富Ti的α-Ti与Ti2Ni的共晶相以及少量弥散分布的α-Ti相。且凝壳层中的O、N元素含量远远高于基体,基体中O、N元素主要富集在α-Ti与Ti2Ni共晶组织中,Ti2Ni组织中最少。熔体表面及近表面区的TiO2夹杂物主要以溶解的方式去除。此外,TiN溶解的最低温度为2671.5 K,电子束作用下的熔池的最高温度为2681.2 K,略高于夹杂物的溶解温度,因此,熔体近表面区的夹杂物可通过溶解的方式去除。实现夹杂物分解去除的最低温度为1847.6K,远低于熔池的局部最高温度(2681.2 K)。因此,上浮至熔体表面的TiN夹杂物受到电子束的轰击从而产生破键作用,分解的产物在高真空环境中被泵体抽出炉外。故TiN的去除机制主要为分解去除。