高功率高光束质量窄线宽线偏振光纤激光技术研究

来源 :国防科技大学 | 被引量 : 0次 | 上传用户:brianwang1982
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高功率窄线宽光纤激光在引力波探测、激光雷达、太赫兹产生、光参量振荡等领域有重要的应用价值。在实际应用中,由于更高的相干性、更高的探测灵敏度和更高的转换效率等优点,线偏振的高功率窄线宽光纤激光更加受到青睐。然而,与宽谱光纤激光和窄线宽随机偏振光纤激光相比,窄线宽线偏振光纤激光面临更强的非线性效应,其中受激布里渊散射(SBS)效应是限制其功率提升的首要因素。随着众多SBS效应抑制方法的采用,窄线宽线偏振光纤激光的输出功率获得一定突破之后,模式不稳定效应随之成为获得高光束质量的限制因素。因此,要推动高功率、高光束质量窄线宽线偏振光纤激光的输出功率进一步提升,SBS效应和模式不稳定效应是需要解决的两个首要问题。本文以高功率窄线宽线偏振光纤激光为研究对象,以高功率、高光束质量输出为研究目标,围绕需要解决的关键技术问题,开展了系统的理论和实验研究:1、综合考虑SBS效应和模式不稳定效应的抑制,围绕高功率、高光束质量窄线宽线偏振光纤激光器的优化设计进行了详细的理论分析。基于SBS动力学模型,系统分析了光纤参数、光纤类型、系统参数对SBS阈值的影响,同时针对脉冲输出的情形,分析了功率放大过程中的时频演化特性,为高功率窄线宽线偏振连续/脉冲光纤激光的优化设计提供了理论指导。基于模式不稳定半解析模型,为高光束质量窄线宽线偏振光纤激光系统的优化设计提供了理论分析工具。2、围绕高功率窄线宽线偏振连续光纤激光开展了系统研究。首先,对比研究了不同类型常规大模场高掺杂保偏光纤在单频线偏振光纤激光功率提升和高亮度输出上的能力。进一步,论证了对常规大模场保偏光纤施加应力梯度以抑制SBS效应的可行性,实现了414 W功率输出,线偏度>99%,是目前国际上全光纤结构近衍射极限单频线偏振光纤激光公开报道的最高输出功率。进一步地,对基于大模场长锥形高掺杂保偏光纤的高功率单频线偏振光纤激光进行了系统研究,实现了510 W功率输出,是目前国际上全光纤结构单频线偏振光纤激光公开报道的最高输出功率。同时,首次研究了国产长锥形光纤用于获得高功率窄线宽光纤激光的可行性,指出了国产长锥形光纤以及基于国产长锥形光纤的窄线宽光纤激光系统的优化路径。首次研究了随机光纤激光用于获得高功率窄线宽线偏振光纤激光的可行性,对比研究了种子线宽和光谱形态对光谱展宽效应和模式不稳定阈值的影响,实现了功率442 W、线宽0.28 nm、线偏度为94.2%的窄线宽线偏振光纤激光输出,是目前国际上以随机光纤激光作为种子源的窄线宽线偏振光纤激光公开报道的最高输出功率,为获得高功率、高光束质量窄线宽线偏振光纤激光探索了一条新的道路。3、围绕高峰值功率和高平均功率窄线宽线偏振脉冲光纤激光开展了系统研究。设计并构建了基于常规大模场高掺杂保偏光纤的高峰值功率窄线宽线偏振脉冲光纤激光器,分析了种子激光时域特性和频域特性对功率放大过程中的时频演化特性以及SBS阈值的影响。论证并分析了对常规大模场高掺杂保偏光纤施加应力梯度以提高SBS阈值的可行性。论证并分析了大模场长锥形高掺杂保偏光纤在抑制SBS效应和光谱展宽效应方面的优势,分别获得了脉宽4 ns、峰值功率60.54k W、线宽1972.97 MHz,消光比>12 d B的线偏振脉冲激光和脉宽3.8 ns、峰值功率29.97 k W、线宽283.75 MHz、消光比>14 d B的线偏振脉冲激光,是目前国际上全光纤结构2 GHz级和300 MHz级窄线宽线偏振脉冲光纤激光公开报道的最高峰值输出功率。此外,基于常规大模场高掺杂保偏光纤,获得了重频10 MHz、脉宽4 ns、线宽203.6 MHz、平均功率466 W、线偏度约为90%的窄线宽线偏振脉冲激光,是目前国际上全光纤结构窄线宽线偏振纳秒脉冲光纤激光公开报道的最高平均功率。4、围绕搭载射频信号的高功率线偏振双频准连续光纤激光和多频脉冲光纤激光开展了理论和实验研究。理论分析了搭载射频信号的双频准连续光纤激光的产生原理和时频特性,设计并构建了线偏振双频准连续光纤激光的产生装置和功率放大系统,实现了434 W功率输出。同时,理论分析了搭载射频信号的多频脉冲光纤激光的产生原理和时频特性,设计并构建了线偏振多频脉冲光纤激光的产生装置和功率放大系统,实现了328 W功率输出。两项研究成果均代表目前国际上同类型光纤激光器的最高输出功率,为线偏振双频/多频光纤激光的拓展应用开辟了新的空间。
其他文献
过去几十年里,信息技术的进步主要依赖器件、芯片和系统性能的提升,但随着“摩尔定律”失效,传统硅基半导体依靠缩小特征尺寸来提升器件性能的道路即将走到尽头。同时,基于冯.诺依曼架构的计算系统又受“存储墙”、“功耗墙”等问题的困扰,性能提升缓慢。为了克服传统计算系统性能提升的瓶颈,未来计算系统必须在器件和架构层面进行全面的革新。高性能存储器、神经形态计算和存内逻辑计算被认为是未来计算的解决方案。忆阻器有
随着脉冲功率驱动源技术的紧凑化发展,具有高储能密度和良好耐压特性的液体绝缘介质在脉冲功率系统中得到了广泛的应用。其中甘油介质具有较高电阻率和较好的电阻率保持特性,与水介质相比甘油介质可不使用去离子循环装置,实现免维护,并且甘油脉冲形成线在工作过程中漏电流小,可应用于低电压长时间(数十微秒)充电的脉冲功率系统。本论文的研究对象主要是甘油介质作为形成线储能介质在数十微秒充电时间条件下的击穿特性和相关机
模数转换器(analog-to-digital converter,ADC)作为沟通模拟世界和数字世界的媒介,是支撑现代电子系统的重要基石,被广泛应用于雷达、示波器、通信、电子战等领域。随着待测信号瞬时带宽的不断提升,迫切需要具有更高采样速率和更高分辨率的ADC,而在现有的工艺条件下,单个ADC的采样速率和分辨率是相互制约的。为了提升采样速率并保持原有分辨率,研究者们提出利用多片相对低速的ADC构
Hg+离子光频标是目前世界上最精确的频率标准系统之一。产生包含194 nm激光,254 nm激光和282 nm激光在内的窄线宽可调谐深紫外光源是实现Hg+离子光频标的必要条件与主要难点。本文的主要研究工作是利用非线性频率变换技术产生高性能的深紫外光源,并应用于精密光谱学领域,主要包括以下几个方面:1.根据由Boyd-Kleinman最佳聚焦条件求得的最优束腰设计并制作了用于产生这三种深紫外激光的倍
热透镜效应,作为热效应的一种,在高功率的情况下会改变增益光纤内部折射率的分布,进而影响模式在增益光纤中的传输。对于所有的增益光纤不论是传统的大模场光纤,还是经过特殊设计结构的超大模场光纤,在激光器中都会由于泵浦吸收量子亏损产热,而受到热透镜效应的影响。就目前对热透镜效应的研究现状来看,研究内容主要是围绕由热透镜效应引起的模场收缩而导致的非线性阈值下降等问题开展的。众所周知,由于增益作用和耦合效应,
基于量子叠加和量子纠缠的量子计算在计算能力上表现出极大的优势。光量子计算系统因具有相干时间长、易于编码和操控、易与量子通信系统对接等天然优势,成为实现量子计算的重要方案之一。相比较体块光学方案,片上光量子计算具有更好的集成度、稳定性、可扩展性、可配置性,是一种更具有实际应用前景的实现方案。在诸多光量子计算芯片的实现平台中,硅基光子芯片具有较大的非线性系数、高集成度以及制备与CMOS工艺兼容等优势,
作为一种特殊的电磁介质,等离子体具有导行电磁脉冲的能力,因此,基于飞秒激光等离子体通道的电磁脉冲传输研究具有重要的现实意义。本文从理论分析、仿真计算和实验验证三个方面开展了飞秒激光等离子体通道的电磁脉冲传输性能研究,主要研究内容和结论归纳如下:(1)进行了飞秒激光等离子体通道的产生与复合研究。根据飞秒激光大气传输中的非线性物理过程,讨论了等离子体丝的形成原理和过程;利用移动焦点模型研究了自由空间传
近衍射极限大功率光纤激光器功率的进一步提升受到了非线性效应等因素的制约。为了提高非线性效应阈值,采用大模场光纤是最直接、有效的措施。然而,增大纤芯直径的同时将导致可支持的本征模式数量增加,在高功率运行下可能产生模式竞争、模式耦合、模式不稳定等过程,最终导致光束质量的恶化。本文主要研究利用光学相关滤波模式分解方法,围绕大功率光纤激光的模式分解与自适应相位控制这一主题,采用理论分析、数值模拟和实验验证
传销自进入中国以来,给国家造成了严重的经济损失,并严重危害了社会的安全稳定和人民群众的安居乐业。特别是近年来,借助于现代通讯、交通、金融与互联网技术的飞速发展,传销呈现出新的态势,传播范围急剧扩大,危害程度急剧增加。目前,传销已经不仅仅是一个经济问题,其存在空间也不仅仅是局限于某一个城市或者某一具体空间,已经演变成为一个综合性的社会问题。传销作为公共治理的重要内容,日益成为政府部门和公共安全问题专
习近平总书记强调,要坚持不懈用新时代中国特色社会主义思想武装全党、教育人民、推动工作,在学懂弄通做实上下功夫,推动21世纪马克思主义深入人心、落地生根。上述讲话极具针对性,党的十八大以来,国内外意识形态安全问题愈加复杂,部分敌对势力利用网络媒体低门槛、高渗透的特点,错误解读、蓄意歪曲甚至直接攻击新时代马克思主义理论成果,试图动摇马克思主义在中国的指导地位;部分党员干部精神疲软,少数人理想信念出现动