【摘 要】
:
复杂网络广泛地存在于社会和自然界的各个领域,这使得复杂网络的研究成为当前最重要且最热门的研究领域之一。复杂网络的结构与节点的复杂性使其在医学、生物学、社会学及信息科学等各个学科领域有着广泛的应用。在信息科学领域,复杂网络的复杂性为信息加密通信提供了优质的条件,研究者们利用此特点设计了基于复杂网络的加密通信方案。对加密通信方案进行安全性分析是必要的。复杂网络的重构是指根据可观测到的数据来推断或计算得
论文部分内容阅读
复杂网络广泛地存在于社会和自然界的各个领域,这使得复杂网络的研究成为当前最重要且最热门的研究领域之一。复杂网络的结构与节点的复杂性使其在医学、生物学、社会学及信息科学等各个学科领域有着广泛的应用。在信息科学领域,复杂网络的复杂性为信息加密通信提供了优质的条件,研究者们利用此特点设计了基于复杂网络的加密通信方案。对加密通信方案进行安全性分析是必要的。复杂网络的重构是指根据可观测到的数据来推断或计算得出网络的结构,是复杂网络研究的前沿课题之一。近几年,研究者们提出了一些网络重构方法。这为我们分析基于混沌动力学网络的加密模型的安全性提供了新的思路与方法。基于混沌动力学网络同步的加密模型因其耦合网络的复杂性和一个用于调控系统参数失配灵敏度的参数的巧妙利用而具有较高的安全性,用传统方法对其进行密钥重构分析效果甚微。本文首先对影响该加密模型的同步性质的系统参数进行了分析,并分别利用随机变量重置的重构方法和恒定驱动信号的方法进行了系统参数重构的研究。利用随机变量重置的重构方法对加密模型中的驱动信号进行随机重置,利用响应网络节点变量的时间序列数据计算出节点耦合关系,讨论了随机重置次数对重构结果精确度的影响以及用于调控系统参数失配灵敏度的参数与重置次数的关系。结合恒定驱动信号的方法对其他系统参数进行了计算分析,在第一种节点耦合方式下对加密模型中所有密钥进行重构并得到了较好的结果。另外,对其他种节点耦合方式下的加密模型进行了系统参数分析,与第一种耦合方式下的加密模型进行比较分析,进而客观分析评价了基于混沌动力学网络同步的加密模型的安全性。通过分析密钥重构结果,并结合重构方法的合理性与重构结果的精确性,对加密系统的安全性进行分析对提高加密模型安全性具有重要意义。从各种不同角度对已有的安全通信模型进行分析,可以为提高保密通信的攻防安全性提供思路与方法,这对增强信息安全防护力度、隐患发现及应急响应与恢复能力具有重要价值和意义。
其他文献
近些年来,人工智能技术发展迅速,机器人,无人驾驶等领域逐渐走到人们的生活中。同时定位与建图(SLAM,simultaneous localization and mapping)是这些领域的关键技术之一,它尝试解决无人设备的定位以及环境的感知等方面的问题。然而在现实的场景中,存在着一些复杂的场景,比如移动物体较多的动态场景,经常发生变化的场景等,这些环境会使SLAM系统的定位和建图精度下降,从而会
面部动作追踪与动画驱动已经广泛的应用于影视、游戏、娱乐等行业中,主要依赖硬件设备捕捉并提取面部的动作,包括头部姿态、面部表情和眼球方向等,将这些运动参数映射到3D模型中,从而实现人脸动画的驱动。在影视行业中,对准确度的要求非常苛刻,依赖十分复杂的图像采集设备,例如多目或深度摄像头等,并且有需要人工操作的前后期处理过程;相反,应用于娱乐行业的方法,对实时性要求非常高,使用精简的方法仅提取极少的面部动
近年来,区块链技术作为信息化时代的新兴前沿技术,受到了政府及社会各界的广泛关注,目前在很多行业都取得了显著的应用成效。而地勘工作属于数据密集型工作,进一步汇聚共享行业地勘数据,加强地勘行业数据资产管理,是当前地勘工作的重中之重。本文通过研究智能合约、区块链数据结构等关键技术,将区块链技术和地质勘察项目监管工作相结合,设计并实现了一个基于区块链的地勘大数据防篡改子系统。该系统通过执行智能合约,可以将
信息的飞速增长引爆了大数据时代的到来,其中随着通信行业的不断发展,也使得越来越多的电信欺诈出现在用户的日常生活中。电信诈骗已经成为影响人们日常生活的主要诈骗形式,且当下的反欺诈手段较为被动与笨重,无法满足高效反诈的需求,针对电信诈骗的研究迫在眉睫。因此,本文基于电信反欺诈场景下的信令数据与通话文本数据,分别提出反欺诈综合决策识别算法,诈骗模式发现及趋势分析算法,能够高效的进行相应的电信反欺诈识别与
随着深度学习领域的快速发展,使用深度学习模型改善认知服务逐渐成为一种趋势。如何在保护用户数据隐私的前提下,基于用户数据在移动设备上为用户训练推断速度快、高性能的深度学习模型用以提供认知服务,成为了亟待解决的问题。先前的研究主要着重于在云服务器上训练高性能的模型为用户提供服务,在边缘服务器对数据进行预处理后再将数据发送至云端完成训练任务,设计新颖的模型结构或采用网络压缩技术以将模型部署在移动设备上,
毫米波雷达受外界影响小,因此能够在各种环境下稳定工作。近年来,毫米波雷达在诸多场景中被广泛应用,路口监测场景下也需要使用毫米波雷达识别车辆的种类。本文重点研究了高分辨距离像(HRRP)的识别算法,分析了传统算法的缺点,设计了车辆目标的识别分类方法,并在实验仿真中验证了算法性能。本文工作主要分为以下两个部分:第一部分研究了雷达的散射点模型,分析HRRP的敏感性和解决方案。然后深入讨论了传统算法的缺点
互联网飞速发展以及web2.0时代计算机与手机等设备的普及,促使网络上用户产出内容的激增。这些包含巨大信息量的数据对为用户提供个性化服务有着重大意义和研究价值。情感分析是挖掘文本内容的重要手段,其主要是辨别文本表达的主观情感。细粒度情感分析——方面级别的情感分析(aspect level sentiment analysis)主要是从文本中提取给定方面的情感极性,近年来已经成为业界的关注焦点。本文
随着互联网行业的飞速发展,各类新型网络业务层出不穷,给接入网网络设备的承载能力带来了不小的挑战。接入网作为最靠近用户侧的网络,直接影响用户的用网体验,对其的改造升级具有十分重要的意义。当前的网络升级规划主要依据工程师经验进行,通过人为经验指导某片区无源光网络(Passive Optical Network,PON)口进行改造升级。但由于人为经验无法量化、判定过程依据指标较为片面,在运营商投资成本受
十九大以来,我国教育信息化迅速发展,实现了从融合应用到创新发展方向的迅速转变,对于心理健康教育工作也是如此,基于互联网环境,通过云计算、智能物联、人机交互、语音识别等先进的信息化技术手段搭建心理健康教育大数据平台,构成的心理教育服务生态圈推进了我国心理教育工作的迅速发展。手机、平板电脑等智能终端产品及人们的日常生活,信息化社会出现了“秀才不出门,便知天下事”的高度科技信息化。届时社会各个群体面临着
近年来,深度学习技术被应用于各种医学影像分析任务,在眼科疾病智能预测任务上也吸引了广泛的研究,然而仍面临以下问题:(1)当前的大多数研究仅使用单一模态影像作为模型辅助诊断疾病的输入,不符合临床时大多数眼病诊断的实际流程。此外,眼科疾病种类繁多且发生率严重不平衡,存在众多罕见眼科疾病,而现有研究使用的影像数据大多疾病种类分布均衡且疾病种类数量较少,这限制了深度学习技术在现实临床场景中的应用。(2)其