将乐窑宋元时期制瓷工艺研究

来源 :中国社会科学院大学 | 被引量 : 0次 | 上传用户:blueskygx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文以宋元时期将乐窑的制瓷工艺为研究重点,以万全碗碟墩窑和南口下瑶窑作为研究对象,对两窑场产品进行了全面的取样分析,从原料、配方、工艺、生产工具等方面入手,探讨胎釉配方、成瓷工艺、原料加工、窑具使用等,充分揭示了宋元时期将乐窑的主要面貌。万全碗碟墩窑于2016年进行了系统发掘,窑业遗迹保存完好,产品主要有青白瓷、青瓷、酱釉瓷等。瓷胎的分析表明制胎原料主要可分为三类,大部分属于高硅低铝类型的瓷石质原料,也有少部分使用了高铝低硅类原料。瓷釉的分析表明大部分产品釉层氧化钙含量偏低,多集中于5%~12%之间。另外氧化钾含量普遍偏高,更接近北方的钙碱釉配方。釉呈色方面,发现碗碟墩窑有一类红棕产品,是古代少见的铁锰离子混合着色。窑具基本以漏斗形匣钵为主,制作匣钵仅使用同一种粘土。南口下瑶窑产品以青白瓷为主,生产少量黑釉瓷兼烧白覆轮等特殊产品。瓷胎胎体均属于高硅低铝类型的瓷石质胎,其氧化钾含量基本大于5%。值得注意的是芒口瓷器的芒口部位检测出了比胎和釉更高的氧化钾含量。釉的分析结果显示以高温钙釉为主。窑具可分为四种类型,分析结果对应了样品的外观。其中精细窑具及部分中等窑具使用与胎体相同的材料,化学成分基本与瓷器胎体相同。精品瓷器都装烧在精细窑具之中,保证了覆烧时窑具与瓷器收缩率相同。我们还使用便携式XRF建立了南口下瑶窑与万全碗碟墩窑的产地数据库,结果表明通过微量元素可以有效区分两处窑址相同类型产品,这为我们使用微量元素探究产地提供了更好的可能。
其他文献
生存分析主要是研究生存状况和生存时间以及它们与各类协变量之间的统计关系的一门学科。生存分析的研究数据存在不同类型的删失(左删失,区间删失以及右删失)。本文选择右删失类型的医学统计领域生存分析类数据进行研究,主要对原始数据存在的数据缺失以及分类变量表示问题进行了处理,并将深度学习方法应用于生存分析模型中,将DeepSurv算法应用于各类数据之上,并与其他应用广泛且性能较好的算法进行对比,且在该算法基
自旋流,即非平衡自旋角动量的定向输运,是目前构建新一代信息存储与处理器件的重要媒介。其中磁性异质结构中自旋流的产生与探测、自旋相关的输运以及自旋与局域磁矩的相互作用等,是目前自旋电子学领域内关注的焦点。自旋霍尔磁电阻(Spin Hall Magnetoresistance SMR),是磁性异质结构中由于局域磁矩对自旋流的各向异性吸收所导致的一种全新的磁输运现象。由于测试和原理相对简单、可较全面反映
新疆地区水资源短缺,生态系统脆弱,湖泊在维持区域生物多样性和生态系统平衡等方面承担着尤为重要的功能。博斯腾湖和吉力湖是新疆的两个大型淡水湖泊,冰雪融水是这两个湖泊的重要补给来源。在人类活动和气候变化双重干扰下,目前博斯腾湖和吉力湖出现了富营养化、水体萎缩咸化以及生物多样性下降等一系列生态问题。本文通过分析湖泊沉积物中的枝角类化石,重建了博斯腾湖过去2000年和吉力湖过去1800年枝角类群落的演化序
黄土、深海沉积和冰芯三者统称为研究全球气候变化的三大理想材料,是第四纪环境变化研究的重要内容。青藏高原东缘广泛分布着黄土堆积,很好地记录了高原地区古环境演化过程。目前,学者们主要围绕其成因、物质来源、沉积特征及环境意义,而年代学的研究比较薄弱。建立可靠的年代框架是研究高原黄土沉积过程和环境意义的重要前提。光释光技术的快速发展和应用,为高原黄土的年代学研究提供了良好的契机。本研究选择位于青藏高原东缘
青藏高原作为全球平均海拔最高的地形单元,在新生代经历了强烈的构造运动和隆起抬升,该事件极大地改变了亚洲的地形地貌,并对全球和区域性气候环境产生深远影响。柴达木盆地是高原北部面积最大的沉积盆地,其中连续的新生代沉积物作为良好的载体,记录了盆地和高原新生代地质事件和环境变化的丰富信息。在前人对柴达木盆地研究的基础上,本文对产自盆地西北部花土沟地区渐新统上干柴沟组的2属蕨类化石开展了研究,并探讨了其地质
燃料电池是21世纪清洁能源设备的重要器件之一。其中直接甲醇燃料电池反应温度低,效率高,易于保存,使其成为燃料电池研究的热点。在甲醇氧化反应(MOR)中,影响反应速率的主要因素是催化剂的性能。因此,寻找高活性,稳定和低成本的MOR催化剂至关重要。在本论文中,将新型高导电性的高强度聚苯胺(聚苯胺-聚乙烯醇导电水凝胶,PPH)作为催化剂载体,通过不同制备方式将钴类活性物质负载至PPH中,制备成M-N/C
吡啶类化合物作为重要的骨架结构,被广泛的应用于药物、农用化学品、染料、材料和天然产物中。2-芳基吡啶、2-芳基喹啉、1-芳基异喹啉作为药物和天然产物的重要片段,将-CN基团引入其中可以显着地改变它们的药理性质和生物活性。然而,利用传统方法将氰基引入到这些小分子的过程中,存在氰基化试剂毒性大、底物需要预官能化等诸多缺点。近年来,过渡金属催化的C-H键氰基化反应已逐渐成为主流,它不但可以提高原子利用率
光催化降解技术已经被证实是降解有机化合物的有前景的技术。作为最广泛使用的光催化剂之一,二氧化钛(TiO_2)不仅具有优异的化学和热稳定性,而且毒性低、价格低、量子产率高。但是TiO_2的宽带隙使它仅对紫外光响应,制约了其光催化效率,因此,有必要开发对可见光响应的光催化剂。类石墨氮化碳(g-C_3N_4)通常用于吸收可见光的光催化反应中,它可以通过热缩合低成本的富含氮的前体来制备。但是g-C_3N_
氮杂环卡宾催化剂已经广泛用于各种不饱和化合物的化学转化。氮杂环卡宾催化中涉及的电子对转移催化反应已得到广泛研究,但通过单电子转移(SET)过程的氮杂环卡宾催化反应具有一定的挑战性。本文围绕可见光/氮杂环卡宾催化开展了以下研究:第一章可见光/氮杂环卡宾协同催化反应研究进展对可见光/氮杂环卡宾协同催化的反应催化模式进行了文献调研,总结了近年来协同催化反应的研究进展。第二章光氧化还原/氮杂环卡宾共催化芳
可见光天然丰度大,是一类取之不尽用之不竭的可再生能源。光催化剂在光照条件下由基态跃迁至激发态,与底物之间发生单电子转移,能够在温和的条件下获得高活性的烷基自由基。21世纪以来,光催化领域的研究成果显著,将可见光作为一种“试剂”与催化剂结合,对于开发高效和选择性的化学转化具有极大的应用价值。自由基化学和光化学的结合已成为现代合成化学广泛应用的工具。本论文主要分为以下三部分:第一章第一部分,将三氟甲基