【摘 要】
:
随着5G网络的商业化与智能设备的便携化,日常生活中越来越多的数据将被数字化。伴随大量数字化数据在互联网中层出不穷,随之而来的便是隐私数据泄露的问题。一旦个人或商业隐私数据遭到泄露,造成的危害不可小觑。因此,保护隐私数据的安全已经成为当下热门的研究课题。在传统的隐私安全方案中,隐私数据通常由用户保存在单个存储设备中。如果存储设备损坏或隐私数据遭受恶意篡改,隐私数据将无法恢复。而拷贝多份副本并分发到多
论文部分内容阅读
随着5G网络的商业化与智能设备的便携化,日常生活中越来越多的数据将被数字化。伴随大量数字化数据在互联网中层出不穷,随之而来的便是隐私数据泄露的问题。一旦个人或商业隐私数据遭到泄露,造成的危害不可小觑。因此,保护隐私数据的安全已经成为当下热门的研究课题。在传统的隐私安全方案中,隐私数据通常由用户保存在单个存储设备中。如果存储设备损坏或隐私数据遭受恶意篡改,隐私数据将无法恢复。而拷贝多份副本并分发到多个设备存储,会增加安全威胁的可能性。因此,研究人员提出了秘密分享(Secret Sharing,SS)以解决上述问题。在SS方案中,隐私数据即秘密被划分为一系列类噪声的片段,这些片段通常被称为份额。为了防止这些杂乱无章的份额在传递或存储中引起安全威胁的问题,通常运用隐写技术将其嵌入到有意义的载体中并分发给各个参与者。最后,参与者们通过若干份合格的份额即可重构原始的秘密。在整个SS方案中,一方面要保证嵌入后载体视觉质量与嵌入容量,另一方面要保证载体的验证能力与稳健性。基于上述两个方面,本文提出了基于隐写技术的安全可验证秘密图像分享方法:首先,本文提出了一种基于整数小波变换(Integer Wavelet Transform,IWT)与隐写技术的可验证秘密图像分享研究方案。该方案通过多项式将秘密划分为一系列类噪声份额,然后将份额嵌入到载体通过IWT后的子带系数中,取代早期研究直接嵌入到空域,小波域具有一定的抗隐写分析能力从而提高了方案中载体的稳健性。为了改善载体的视觉质量,本方案使用最佳化像素调整过程(Optimal Pixel Adjustment Process,OPAP)优化嵌入后载体的视觉质量。此外,为了提高载体的验证能力以防止伪造份额参与重构过程,本方案中载体的一个验证单元被嵌入了更多的验证信息。实验结果与理论分析证明本方案具有更好的载体视觉质量,验证能力和一定的抗隐写分析能力。其次,由于二维码(Quick Response Code,QR Code)高容量、易读写与纠错能力强的优点,已经成为当下最流行的载体之一,秘密分享在二维码上的应用具有广阔的前景,因此本文提出了一种基于二维码纠错性质与隐写技术的可验证秘密图像分享研究方案。该方案根据里德-所罗门(Reed-Solomon,RS)编码的同态性质将验证信息嵌入载体二维码而不损害载体二维码原本的任何功能,并根据二维码的纠错功能将类噪声份额嵌入到载体二维码的纠错冗余中。本方案充分利用二维码本身特性,实现了隐写后的载体二维码可正常读取其原本公共信息,而不会泄漏任何隐藏的秘密,有效减少了被攻击者注意的可能性;另外,通过多项式实现了载体二维码的高嵌入容量,并且更多的验证信息可以提高验证过程的安全性。综上,本文以普通灰度图像与如今热门的二维码作为研究载体,在深入了解研究背景与秘密分享技术后对现存方案进行改进与创新,使秘密分享技术能够在更广泛的领域得以应用。
其他文献
随着社会的快速发展,微信、淘宝、微博等社交媒体用户数数以亿计,通过社交媒体可以发表心情、感想和对各类事件的看法等,并由此产生了大量的社交文本数据。通过对社交文本中的情感信息进行情感倾向挖掘,可以很直观的反映出用户个人的情感倾向和社会舆论问题。在政府舆论监督、企业管理决策、个人情感管理等方面都发挥着重要的作用。目前,针对传统文本情感倾向的分析研究已经比较成熟,但社交短文本的情感分析研究依然还比较落后
深度学习在给计算机视觉领域带来革新的同时,也对社会安全产生着威胁。尤其是近年来由人脸交换技术制作的伪造人脸视频,不仅侵犯了个人隐私还影响了社会安全。目前大量的研究开始专注于检测这类伪造人脸视频,但在检测模型的设计阶段普遍缺乏针对动态瑕疵、纹理瑕疵等伪造人脸特殊性的考虑,导致现有模型难以有效地融合人脸视频的空间与时间特征。另外,缺乏足够的约束会导致模型学习到冗余信息,进而使伪造检测任务上特征的表达精
射频识别技术(Radio Frequency Identification,RFID)已先后在多个领域内成功地应用,给人们带来了诸多的便利。而且随着物联网热潮的兴起,深入到人们日常的生活工作出行中,人们也越来越离不开射频识别等技术。然而,基于射频识别技术的系统工作在开放信道中,往往面临着窃听、重放、去同步等多种类型的安全威胁,在交易或使用过程容易出现隐私信息泄露、财产损失等问题,这将会阻碍物联网技
随着深度学习的广泛应用,通过变脸、换脸或生成对抗网络(Generative Adversarial Network,GAN)等方式生成的虚假人脸在网络中不断传播。因此,研究有效的人脸取证技术变得尤为重要。针对生成人脸检测,当前其研究主要关注整幅人脸图像均为生成的。但在一些现实场景中,一幅生成人脸图像中只是小部分局部区域是生成的,甚至很小部分,其余绝大部分区域都是自然的,例如人脸图像复原、眼镜去除、
数字图像数量的急速增长促使各团体组织和个人,将图像存储和计算处理外包给云服务器。而无防御地上传明文图像到云服务器会带来隐私泄露风险,图像加密又会阻碍数据的有效使用。现有的加密图像检索技术使用户承担了大量计算任务,如特征提取、特征加密、索引建立等,因而研究减轻用户负担的检索方案成为了本论文的重点。为此,本论文提出基于局部二值模式(Local Binary Pattern,简称LBP)的加密图像检索方
近年来,三维点云分析在计算机视觉、机器人以及自动驾驶等许多领域得到了广泛关注。传统的点云分析方法通过人为定义的规则或手工设计的特征提取点云的特征表示。这类方法依赖于启发式的先验知识,因此不能很好地处理复杂的点云场景。随着深度学习技术的蓬勃发展,越来越多的研究人员将这一技术应用到点云分析中,并在各种点云分析任务中取得了显著效果。然而,点云具有不规则性、无序性以及稀疏性等特性,这使得如何高效地提取点云
目标跟踪作为计算机视觉领域的研究热点之一,在现在社会中有着广泛的应用。虽然目前已经提出了很多优秀的算法,但是由于跟踪挑战因素与训练样本的制约,目标跟踪算法在有些方面的表现依然不够理想。本文在相关滤波算法的基础上,针对现有跟踪算法中存在的问题,做了以下工作:为了解决目标跟踪算法在面对长期遮挡后无法识别目标的问题,本文在相关滤波算法的基础上,提出一种基于双检测器系统的长期目标跟踪算法。在跟踪过程中,当
随着互联网的不断发展,已由传统意义下的信息发布平台逐渐演变为一个开放的分布式计算基础设施。2002年面向服务的架构(SOA)的提出,使得“服务”成为开放网络环境下资源封装与共享的核心概念。然而,随着跨企业应用的日益复杂,单一的网络服务已实现不了复杂业务的需求,需要通过将多个满足不同功能的服务按照一定业务流程组合起来,来构建复杂的服务系统(SBS)以满足商业上的逻辑需求。另外,随着轻型智能设备、网络
大数据时代,网络及现实生活中充斥着纷繁复杂的篡改图像,使用单一的篡改手段已不能满足当前篡改者对图像视觉质量的要求,篡改者必然使用越来越多、越来越复杂的数字图像处理技术进行图像的篡改伪造,这无疑增添了辨别图像真伪的难度。篡改图像的恶意使用,并借助社交网络进行病毒式传播,对社会、国家、国际信任体系与安全构成巨大的威胁。研发针对篡改图像的检测技术,及时准确地检测虚假消息,对社会、国家,甚至国防安全战略等
图像分割作为图像处理领域的一项基础性任务,也是计算机视觉领域三大分类任务之一,其重点是对图像中的每个像素点分类,已在遥感、医学等领域得到广泛应用。然而,对于遥感领域的SAR图像分割问题来说,其结果常受相干斑噪声影响,使得SAR图像的分割质量下降。其次,在医学图像分割过程中,常受各种伪影,如噪声、信号强度不均匀等问题的影响,以及普通图像在拍摄及传输过程中常受高斯噪声影响,导致图像分割性能下降。针对以