【摘 要】
:
近年来,随着近地轨道卫星的快速发展,卫星物联网(satellite-based internet of things,S-Io T)将为第五代(fifth generation,5G)移动通信以及下一代大规模机器类通信(massive Machine Type Communication,m MTC)提供经济高效的全球覆盖和宽带接入。然而,如何实现高效的m MTC仍然是一个开放难题。本文重点考虑S
论文部分内容阅读
近年来,随着近地轨道卫星的快速发展,卫星物联网(satellite-based internet of things,S-Io T)将为第五代(fifth generation,5G)移动通信以及下一代大规模机器类通信(massive Machine Type Communication,m MTC)提供经济高效的全球覆盖和宽带接入。然而,如何实现高效的m MTC仍然是一个开放难题。本文重点考虑S-Io T的m MTC业务场景下,大量传感器设备采用短包通信同时接入时,现有的正交导频(Regular orthogonal pilot,RP)机制效率受限的难题,研究了基于混合导频非正交多址接入(hybrid pilot Non-Orthogonal Multiple Access,HP-NOMA)协议。首先研究了导频和数据叠加传输的叠加导频(superimposed pilot,SP)NOMA机制,并分析了采用连续干扰消除(Successive Interference Cancellation,SIC)和连续联合译码(Successive Joint Decoding,SJD)时的系统中断概率和可达吞吐量性能,然后进一步研究了S-Io T不同系统参数下HP-NOMA机制的适配场景。由于SP机制导致传统基于最小方差的信道估计在S-Io T场景下失效,首先提出了一种基于岭回归的迭代信道估计(ICER)算法,并根据用户设备接收功率的统计信息来识别导频冲突。在卫星-地面的阴影莱斯信道衰落条件下,推导了S-Io T系统采用SP-NOMA机制时SJD和SIC两种译码方式下系统的中断概率和可达吞吐量的表达式。基于此,进一步优化了叠加导频和数据信息的最优功率分配系数。蒙特卡洛仿真验证理论推导的准确性,并在不同的包长情况下,比较了SP-NOMA和RP-NOMA的可达吞吐量性能,仿真结果表明SP-NOMA更加适用于短包通信的m MTC场景。在此基础上进一步深入研究HP-NOMA机制,探索S-Io T不同通信参数下的最优导频机制。首先基于Kaczmarz算法提出了一种低复杂性的ICEK迭代信道估计算法,并加入收敛因子以加快估计算法的收敛速度。给出了HP-NOMA的中断概率表达式,对HP的关键参数推导了闭合表达式并进行优化。本文创新性是在S-Io T场景设计了HP-NOMA机制,分析了S-Io T不同参数下,采用RP、SP和HP时的系统性能,并给出了三种导频机制的最优适配场景并进行了仿真验证。
其他文献
无人机集群自组网相比于地面MANET网络,在三维空间中具有更大的灵活性,在军事和救灾场景下具有重要的应用意义,与此同时,由于无人机之间距离远,无人机集群网络更加稀疏,无人机飞行速度较大,通信链路容易中断失效,进行三维空间网络拓扑控制要考虑更多的因素,而现有的二维平面网络拓扑控制技术应用在无人机集群自组网具有很大的局限性,因此,研究基于三维空间的有效拓扑控制是有必要的。为了构建具有一定容错性和抗毁能
随着互联网时代的到来,各种信息的数字化在人们的生活中随处可见。比如之前学生上课大多采用纸质书籍作为信息承载媒介,而近年来课件、PPT等电子授课工具越来越流行。甚至出于成本的考虑,电子化书籍也在学生中颇受欢迎。但是与此同时也带来了一系列的问题,比如电子化书籍中的PDF或者图片中的文字无法像文档一样直接编辑,为信息查找、修改或者统计录入带来了诸多不便。针对这些问题,本文提出了一个基于隐马尔可夫模型的文
阿尔茨海默病作为最常见的老年疾病之一,其主要表现为患者认知功能下降并逐渐丧失生活能力。该疾病具有隐匿性和不可逆性,尽早的诊断与干预对延缓病情发展对提高患者生活质量具有重要作用。研究表明阿尔茨海默病会导致患者大脑结构形态畸变,其中最典型的脑部结构是海马体。因此磁共振影像中海马体形态变化研究有助于疾病的早期诊断以及对疾病的发生和进展机理的进一步研究。目前磁共振影像中阿尔茨海默病海马体形态学研究方法仅从
卫星物联网(Satellite-based Internet of Things,S-Io T)能够突破现有地面网络仅覆盖20%左右陆地范围的局限,实现全球立体覆盖下的宽带接入。S-Io T已成为下一代移动通信的重要发展方向之一。本文面向未来S-Io T服务于地面终端的典型业务场景,综合考虑卫星受限的功率资源、星地长距离链路导致的大传播延时以及信号衰落,设计了基于网络编码(Network Codi
伴随着信息时代的发展,人们的数字娱乐生活越来越丰富,智能手机提高人们生活品质的同时也对无线数据业务的提出了新的要求。在第五代移动通信(Fifth-Generation Mobile Communication,5G)时代,移动无线网络不仅仅需要提供几十倍于4G(Fourth-Generation Mobile Communication)的峰值传输速度,更需要保证毫秒级的数据传输时延。当前的商用的
脑肿瘤又称脑胶质瘤、脑癌,是最具侵袭性的肿瘤之一,无论对患者的身体上还是心理上都威胁极大。核磁共振成像技术由于成像质量高,且对人体没有伤害,在临床上被广泛应用于肿瘤图像的采集。然而脑肿瘤图像十分复杂,不同肿瘤亚区的边界具有一定的模糊性,这使得脑肿瘤分割工作变得非常困难。当前主要是依靠医生或专家手动进行分割,不但效率低,而且医生在长期高强度的工作下可能会导致分割精度的下降。另外,为了能帮助医生进行临
多载波系统是当今水声通信的热点研究方向,其利用循环前缀(Cyclic Prefix,CP)拥有了优秀的抗多径性能,但是其采用的矩形窗带外衰减过慢,导致受多普勒效应干扰明显,且CP的使用也降低了系统的信息传输速率。水声信道复杂且变化快速,存在明显的多普勒效应,后者极大限制多载波通信技术在水声通信中的应用。而滤波器组多载波(Filter Bank Multi-Carrier,FBMC)系统既有良好的抗
移动数据的爆炸式增长,给传统的蜂窝网络带来了前所未有的挑战。为了缓解海量无线流量带来的压力,边缘缓存技术成为了当下研究的热点。边缘缓存把部分网络内容放置在具有缓存能力的边缘节点中,可以在流量高峰时实现快速的内容分发,缓解传统蜂窝网络的流量压力。通常,这些边缘节点可以是基站或者是移动设备等。随着移动设备数量的飞速增加和移动设备中的存储介质成本逐渐降低,D2D(Device-to-Device)通信技
进入信息时代以来,网络中信息的数量以惊人的速度急剧增加。用户要在这些巨量的信息资料中准确找到所需的部分极其困难,如何利用计算机辅助用户过滤噪声数据,挖掘有用信息已经成为目前的研究热点。命名实体识别是利用计算机从自然语言文本中抽取出命名实体,为之后更高级的任务奠定基础。对于科研技术人员来说,经常需要从大量文献中寻找资料,而中文领域的命名实体识别研究目前还大多集中于通用领域,也就是新闻文本领域,涉及科
随着移动数据流量的爆炸式增长,现有的蜂窝通信系统在海量数据请求时所承受的负担日益严重。通过基站转发至核心网的通信模式已经无法满足5G时代对大容量、低时延、低功耗的用户体验需求。随着移动设备计算和存储能力的提升,将内容存储在移动设备中,采用设备到设备(Device-to-Device,D2D)通信技术进行信息传递的移动存储系统成为解决海量数据大规模并发请求的关键机遇。移动设备在电量耗尽或离开基站覆盖