论文部分内容阅读
高速铁路以其速度快、运能大、能耗低、污染轻、占地少以及安全舒适等综合优势,在世界各国得到了迅速发展。我国在跟踪研究国外高速铁路技术、积极规划高速铁路的同时,通过新建快速客运专线、大力加强既有线的技术改造大幅度提高了列车的运行速度。但是,随之而来的轮轨系统的动力作用、行车的安全性和舒适性、线桥结构的运用安全性问题也越发突出,而这在我国尚缺乏足够的理论研究和工程实践。因此,快速及高速运行条件下的列车、线路、桥梁动态相互作用问题已成为我国铁路实现跨越式发展亟需开展的基础性研究课题之一。 本文在简要回顾国内外高速铁路技术发展以及车辆-轨道动力学、车桥振动研究的历史与现状的基础上,针对高速铁路列车、线路、桥梁动力相互作用问题,提出了将机车车辆、轨道及桥梁作为一个耦合大系统,以车辆动力学、轨道动力学、桥梁动力有限元方法为基础,以轮轨关系、线桥关系为联系纽带,应用数值仿真的方法来研究高速行车条件下轨道及桥梁结构的动力特性、行车的安全性和舒适性的研究思路。 列车-线路-桥梁耦合动力学模型的正确性和完善程度对仿真结果的可靠性和准确性起着决定性的作用。为此,本文首先建立了比较完善的高速铁路四轴机车车辆以及六轴机车的动力学分析模型。模型中将机车车辆视为多刚体系统,充分考虑了车体、构架、轮对的横向、垂向、侧滚、摇头、点头自由度以及车辆悬挂系统的各种非线性因素。本文在国内首次针对高速铁路桥上有碴轨道、长枕埋入式无碴轨道、板式轨道、弹性支承块式轨道结构以及各种轨道的路桥过渡段建立了系统全面的动力学模型。模型中将钢轨模拟成离散弹性点支承基础上的无限长Euler梁,轨道板视为弹性地基上的等厚度矩形薄板,轨枕、支承块以及离散后的道床视为刚性质量块。同时,本文还根据离散系统动力问题的Hamilton变分原理,建立了桥梁结构的动力有限元方程,给出了桥梁结构动力分析中常用的空间杆单元、空间梁单元以及矩形受弯板单元的力学特性矩阵,并简要讨论了桥梁结构的阻尼矩阵以及特征值问题。 轮轨关系和桥轨关系是机车车辆、轨道和桥梁之间相互作用的联系纽带。本文详细论述了应用轮轨空间接触几何关系、轮轨法向Hertz非线性弹性接触理论、轮轨切向蠕滑理论、桥轨相互作用关系进行车线桥耦合动力学分析的原理,并简要介绍了列车-线路-桥梁动力学仿真通用软件TTBSIM。 高速铁路列车、线路、桥梁的动态安全性和行车舒适性的评价标准将直接影响线桥结构设计的质量和经济性。本文对国内外有关机车车辆、轨道及