论文部分内容阅读
超快激光技术和半导体材料的进步使太赫兹波的产生和探测效率得到了大幅提高,太赫兹波的相关研究在近二十年来飞速发展,无论是太赫兹波的产生、探测、调制还是应用研究,都需要深入理解太赫兹波与目标物质之间相互作用,而太赫兹时域光谱系统可以提供太赫兹波在穿透待测样品后每一个频率成份上幅值和相位的变化信息,是在太赫兹波段(0.3-3.0 THz)研究光与物质的相互作用的最佳工具。本文利用透射式太赫兹时域光谱系统对固态样品展开了表征研究,涉及的固态样品包括有机物单质晶体、药物共结晶以及高分子聚合物,表征的内容包括幅值变化提供的太赫兹吸收谱,以及相位变化提供的介电谱。研究主要内容和创新点如下:1)在晶体太赫兹吸收谱的形成机制研究中,利用量子化学计算成功对谷氨酰胺太赫兹吸收特征进行了振动模式的匹配,在研究过程中通过对计算所用初始构型的调整,使计算模拟的吸收谱向实验吸收谱不断逼近,体现了分子间作用对谷氨酰胺太赫兹频段内太赫兹吸收特征的影响。该研究对于考察物质中分子内作用和分子间作用对太赫兹吸收特征形成的主导程度提供了新的线索和证据。2)在共结晶及多晶型的太赫兹吸收谱表征研究中,利用太赫兹波对分子间作用的敏感响应,观察到了两种物质之间共结晶的形成,并对共晶产物中的多晶型现象进行了吸收特征分辨,对共晶产物亚稳态在自然条件下向稳态晶型转换的过程,利用太赫兹时域光谱技术的快速响应对转换过程进行了原位监控,实现了晶型转换过程的量化表征。该研究展示了太赫兹光谱技术在共结晶药物研发领域的应用前景,对晶型转换机制研究提供了新的监测表征手段。3)建立了适用于透射式太赫兹时域光谱系统对固态样品进行表征后的介电分析模型,对聚乙烯和聚四氟乙烯实现了精确的介电常数测定,并利用测定的介电常数及提出的介电分析模型对二者不同配比的混合物进行了介电常数预测,预测值与实验值保持了高度的一致性。该研究提出的介电分析模型可以扩展到更多的高分子材料单质及其混合物的太赫兹介电性质分析中,对太赫兹波段的聚合物材料介电性质设计提供了一种新的途径。4)提出了聚合物载体中固态样品太赫兹极化率的分析提取方法,该方法能够广泛的应用于太赫兹波段的强吸收物质。利用该方法我们实现了阿司匹林与三种氨基酸的太赫兹极化率精确测定,并且针对晶格信息可能无法获取的情况提出了相应的解决办法,扩大了方法的适用范围,利用本方法测得的极化率作为一项物质基本参数,将来可以用于研究固体的硬度、熔点、溶解度等宏观性质。