论文部分内容阅读
食品过敏是一种发生频率高,范围广且反应严重的疾病,过敏反应包括皮肤、呼吸系统、神经中枢系统、肠胃系统等,严重的过敏反应甚至会带来生命危险。现行的检测方法大多通过对蛋白质和核酸的检测来间接评价食品过敏原,检测结果易受到外部环境的影响。而细胞传感技术以机体免疫系统中的活细胞作为传感介质,相比其他常规的检测方法,细胞传感技术的灵敏性更好且专一性高。本文针对食品中的过敏原蛋白构建三种基于肥大细胞的、特异性强、灵敏度高、检测速度快、结果准确可靠的电化学细胞传感器,用于检测食品中的过敏原蛋白。以期为食品过敏原的检测研究提供一条新的途径。本文的主要研究结果如下:(1)为检测花生过敏原蛋白Arah2,选用浓度为0.40mg/mL纳米金和1.00mg/mL纳米磁珠对工作电极(磁性玻碳电极)进行修饰,构建基于三电极的RBL肥大细胞电化学传感器。该传感器的电流信号与细胞浓度具有良好的相关性,确定最优细胞浓度为1×107个/mL。磁性玻碳电极表面阻抗值(Ret)与花生过敏蛋白Arah2的浓度成正比,检测的线性范围为0.02至0.10 ng/mL,相关系数为0.996,检测限为8.00 pg/mL;结合扫描电镜、透射电镜及RBL肥大细胞内Ca2+水平检测的结果,证实了 RBL肥大细胞电化学传感器检测结果的可靠性。(2)为检测牛乳中的酪蛋白,同时为提高检测设备的便携性与移动性,简化检测设备后处理的操作,设计制备了基于纤维素纸的纸芯片作为检测平台。选用浓度为7.00 mg/mL碳纳米纤维和3.00 mg/mL石墨烯纳米片对纸芯片的工作电极进行修饰,构建基于RBL肥大细胞的电化学纸芯片传感器,该纸芯片传感器与细胞浓度具有良好的相关性,确定最优细胞浓度为1×107个/mL。检测酪蛋白时,纸芯片的峰电流值(Ip值)与酪蛋白浓度成反比,其线性范围为0.10至1.00 μg/mL,相关系数为0.996,检测限为0.03μg/mL。电化学传感器的检测结果与ELISA测定结果相互验证,与扫描电镜、透射电镜,RBL肥大细胞内Ca2+水平检测的结果相符,验证了基于RBL肥大细胞的电化学纸芯片传感器用于评价牛乳中酪蛋白的可行性。(3)为更好地模拟体内过敏环境,降低试验成本,以化合物48/80(Conpound48/80,以下简写C48/80)作为检测目标物,选用浓度为6.00 mg/mL的二硫化钼和2 mmol/mL的氯金酸对纸芯片的工作电极进行修饰,将RBL肥大细胞与B细胞共培养,构建基于细胞共培养体系的电化学纸芯片传感器,该纸芯片传感器与细胞数浓度之间具有良好的相关性,确定最优细胞浓度为1×107个/mL。试验结果显示,纸芯片的电流值与C48/80浓度成反比,其线性范围为0.02至0.10 ng/mL,相关系数为0.991,检测限为0.21 ng/mL。纸芯片传感器的检测结果与扫描电镜、透射电镜,RBL肥大细胞内Ca2+水平检测的结果相符,说明所构建的纸芯片传感器能够用于定量检测C48/80。综上,本文针对食品过敏原以RBL肥大细胞为传感元件,结合电化学、微流控纸芯片等技术构建三种新颖、灵敏、高特异性的电化学细胞传感器,并用于食品过敏原的检测,为食品过敏原的检测提供了新的方法。