论文部分内容阅读
葫芦脲(Cucurbit[n]uril, n=5,6,7,8,9,或10, CB[n])分子是由5-10个甘脲基元与甲醛缩合而成的大环化合物,具有由羰基环绕的端口和疏水环境的空腔。葫芦脲的分子结构赋予其卓越的超分子识别性能,体现为高选择性,高的结合强度,以及结合体的可调控性。葫芦脲化学的发展主要经历合成方法探索、超分子识别能力研究,和基于葫芦脲的功能体系和复杂结构的构建几个阶段。其中第三阶段,基于葫芦脲分子的功能体系和结构构建,是目前研究的热点和难点。界面是传感、识别、催化等功能体系和器件的重要作用区域,但目前,由于在葫芦脲衍生化方面的难度,还缺乏将葫芦脲分子固定在界面的有效手段。另外,葫芦脲分子一直以来被作为超分子化学的主体分子,对它的研究还主要集中在分子层次,和宏观晶体工程领域。而基于葫芦脲的微纳米结构构筑还鲜有报道。本论文中,我们将葫芦脲的超分子性能拓展到构建微纳米结构的领域,主要围绕以下三个主题展开:1.首次提出并表征了葫芦脲多羰基的端口与金表面之间存在强吸附作用,并以此为基础,发展了在金表面构筑葫芦脲自组装单层膜的技术。CB[7]自组装单层膜保留了对二茂铁的识别能力。而以CB[6]和胺分子体系为例,说明表面葫芦脲单层膜的识别性能区别于溶液相环境。2.将葫芦脲的分子识别研究拓展到微纳结构制备领域,发展了以葫芦脲为构筑基元制备有机微纳米晶体的新方法。所制备的微纳晶体呈现八面体、截角八面体,正方形片层等多种形貌。利用葫芦脲的分子包结能力,将喹啉、吲哚、香豆素等分子整合于微纳结构中。对晶体的结构和荧光性能做了详细表征。3.探索与表征了葫芦脲与蛋白质的非共价及(在竞争客体存在时的)可逆相互作用,并以此为基础,结合交替层状组装技术,发展一种制备蛋白质多层膜材料的新方法。蛋白质负载量随双层数的增加线性增长。以过氧化氢酶为例,表明蛋白的催化活性在多层膜中得到保留。