论文部分内容阅读
随着强激光用于约束聚变理念的提出,各大型激光器的研制如火如荼地展开,然而光学元件负载能力,大大限制了激光器输出的能量,而亚表面的缺陷又是导致光学元件负载能力下降的根本原因之一。针对亚表面缺陷诱导激光损伤的问题,我们从理论分析的角度,着重从以下几个方面来展开。首先,研究激光损伤的机理,探讨引起损伤的因素。其次,由于计算量和计算复杂度大,对计算机硬件要求高等原因,该课题国内尚无人对熔石英亚表面缺陷附近的光场进行三维模拟,比较三维计算与二维计算的差别,探讨三维模拟的必要性。然后,建立三维缺陷模型,并编写三维的计算程序,都是重要的工作。最后的目标是,定量地分析出各类缺陷的安全尺寸,为实验上熔石英的安全尺寸判断提供一定的理论依据。
基于以上一系列问题,我们就熔石英亚表面损伤问题,进行了系统而详尽的理论研究,主要工作和结果如下:
1)参考了国内外有关亚表面损伤问题的成果,总结了影响激光损伤的几大因素,主要包括激光参数(主要有能量、波长、脉宽、脉冲数等)和亚表面缺陷形貌特征(主要有几何形状、尺寸、倾斜角等)两大方面。根据实验上的熔石英亚表面缺陷形貌,归纳出了几种典型的缺陷类型:横向划痕、径向划痕、赫兹锥形划痕(HCS)以及杂质颗粒。
2)开展了三维时域有限差分方法(FDTD)的研究。三维情况比二维情况复杂很多,在程序中,我们加入了三维的模型建立、三维的FDTD计算公式、三维情况的总场边界条件(包括面边界条件和棱边界条件)以及PML吸收边界条件等。计算复杂度远远大于二维情况,对同一尺寸的缺陷和相同的入射激光参数,分别进行三维和二维的模拟,结果显示,三维情况下缺陷对场增强的贡献更大,验证了进行三维模拟的必要性。
3)基于三维FDTD方法,建立了熔石英亚表面三维长方体缺陷、径向划痕、HCS以及杂质颗粒的缺陷模型,分别进行了计算模拟,并详细分析了各类缺陷对入射激光光场的调制作用,研究表明,后表面是激光损伤的薄弱环节;径向划痕的光场增强约能达到10,赫兹锥形划痕的场增强明显高于径向划痕,可以达到57,杂质颗粒对光场调制最明显,光强增强因子可以轻易突破100。