【摘 要】
:
随着我国交通事业的快速发展,沥青路面功能性(抗滑性、排水性、降噪性等)越来越受到重视。透水路面因具有排水功能而受到了广泛关注与应用,但其特殊的开级配结构要求所用沥青须具备高粘结性、抗剥落及抗车辙等特性。本论文提出以不同黏弹性能的橡胶沥青为主体,复配不同掺量SBS制备橡胶沥青基透水路面专用沥青并进行了性能研究。论文从135°C黏度及黏弹变化趋势出发,研究了橡胶沥青的溶胀及降解规律;通过动态力学分析法
论文部分内容阅读
随着我国交通事业的快速发展,沥青路面功能性(抗滑性、排水性、降噪性等)越来越受到重视。透水路面因具有排水功能而受到了广泛关注与应用,但其特殊的开级配结构要求所用沥青须具备高粘结性、抗剥落及抗车辙等特性。本论文提出以不同黏弹性能的橡胶沥青为主体,复配不同掺量SBS制备橡胶沥青基透水路面专用沥青并进行了性能研究。论文从135°C黏度及黏弹变化趋势出发,研究了橡胶沥青的溶胀及降解规律;通过动态力学分析法研究了橡胶沥青黏弹体系及胶粉粒径对其流变性能的影响;探究了SBS掺量等对专用沥青性能的影响;最后优选出10种专用沥青进行透水路面沥青混合料的设计及性能测定,验证了橡胶沥青基透水路面专用沥青和混合料的可行性。研究结果表明:橡胶沥青溶胀及降解规律研究表明,在恒温溶胀阶段,橡胶沥青黏度增大至稳定时为全溶胀状态;当反应温度升高时,橡胶沥青的黏度因溶胀而继续增加,之后随降解程度的加深而降低,当降解时间足够长时,黏度达到稳定值,即全降解状态。小粒径橡胶沥青达到全溶胀和全降解状态的时间缩短,更易发生溶胀与降解反应。橡胶沥青溶胀程度有利于提高其抗永久变形及抗车辙能力;而降解过程削弱了其弹性性能及变形恢复能力。溶胀/降解程度对橡胶沥青性能的影响规律研究结果表明,随着降解程度的增加,橡胶沥青高温性能显著减弱,零剪切黏度逐渐降低,回复率R%先增加后减小,而不可恢复柔量Jnr则不断增加。全溶胀沥青具有最好的高温抗车辙能力,而全降解沥青最差。在低温性能方面,全溶胀专用沥青最差,而全降解专用沥青最佳。胶粉粒径对全溶胀及部分降解橡胶沥青的高温性能影响较大,而对全降解橡胶沥青的影响不明显。全溶胀沥青剪切变稀明显,更倾向于非牛顿流体性质,而全降解沥青牛顿流体范围更广。SBS含量对专用沥青性能的影响规律研究结果表明,SBS有利于提高专用沥青的高温抗车辙、弹性恢复能力及低温性能等。在研究范围内,全溶胀专用沥青的高低温性能无法同时满足透水沥青路面对沥青结合料性能的要求,而部分降解和全降解专用沥青在SBS含量达到3wt%时能满足性能要求。透水路面专用沥青的混合料应用研究结果表明,透水沥青混合料目标空隙率为20%时的最终级配2.36mm通过率为16.3%,最佳油石比为4.23%。选用的10种专用沥青制备得到的沥青混合料在高温性能、空隙率、析漏及飞散、强度、水稳定性及渗水性能均能满足透水路面性能要求,验证了不同黏弹性能橡胶沥青基沥青结合料用于透水沥青路面的可行性
其他文献
焊接残余应力是影响焊接结构疲劳寿命的关键因素。精确地预测焊接残余应力,深入了解残余应力对焊接构件疲劳寿命的影响机制,建立充分考虑焊接残余应力作用的疲劳寿命预测方法,对基于残余应力调控的疲劳设计具有重要意义。本论文以SAF2205不锈钢为研究对象,通过优化疲劳损伤本构模型,建立了虑及不同循环周次下残余应力演变规律的寿命计算方法,为接头寿命预测提供参考依据。主要工作和结论如下:(1)针对SAF2205
发酵行业、造纸行业、矿石开采、金属表面处理和加工等行业和过程中,往往产生大量的酸性含盐废水,威胁生态环境和人类健康。膜分离法具有效率高,灵活等优点,可以实现酸与金属盐的分离回收,可被用于酸性废水处理。以聚酰胺化学结构为分离层的传统反渗透和纳滤膜因其化学结构本质上的缺点而导致酸碱稳定性不好、抗氧化性能较差,限制了其在含酸废水处理领域中的应用。聚磺酰胺是一种以磺酰胺键联结的高分子,其特定的磺酰胺键使得
S油田目前处于“高含水率、高采出程度”阶段,剩余油分布规律复杂,总体呈现“整体分散、局部富集”的特征,持续提高油田开发效果的难度较大。因此有必要对目前的渗流场进行描述和评价,并制定相应的重构方案。为了达到明确目标油田各个开发阶段波及和驱油特征的目的,从一维、二维、三维三个维度展开物理模拟室内实验。分别考虑平面波及系数和纵向波及系数的渗流特征和静态特征,推导相应的理论计算公式,并对主要影响因素进行敏
二氧化碳作为温室气体之一,是导致全球温室效应及气候变化的主要因素之一。CO2的分离是对于温室气体减排和能源气净化的一个重要工业过程,CO2分离技术及有效捕获成为了近年来的研究热点。与传统的分离技术相比,膜分离技术具有能耗低、易放大、操作简便、投资和运营成本低及环境友好等突出优势,因此被看作是一种绿色且经济可行的替代方法,极具应用前景。但是气体分离膜材料普遍受到渗透性和选择性间“trade-off”
在过渡金属催化剂中,钯催化剂因独特的配位性质和卓越的催化性能,对交叉偶联、脱氢等反应展现出无可比拟的催化性能,开发高效可循环的多相钯催化剂一直是科学研究的重要方向。纳米碳材料价廉易得,具有优异的结构和性能,是制备多相钯催化剂的优质载体材料。然而,传统碳材料负载的钯催化剂催化活性和选择性仍有待进一步提升,设计和开发新型高效的纳米钯/碳多相催化剂具有重要的研究意义和应用前景。鉴于载体的形貌结构和电子性
随着石油天然气资源需求量的与日俱增,国内油气供需关系产生了巨大缺口,寻找并开发油气资源已日趋紧迫。石油勘探开发已迈向深层油藏、超深层油藏、复杂地层油藏以及海洋油藏,使得石油勘探和钻井开采的难度不断增大。等井径钻井技术可以实现无径损钻井,是实现深井和超深井的技术保障,也是钻井技术发展的必然选择。等井径钻井技术的核心是等井径膨胀管技术,而管材的本构及其膨胀成形理论是发展等井径膨胀管技术的理论基础。本文
锂离子二次电池具有充放循环次数多、环境友好、使用安全等优点,已被广泛应用于各个行业。然而,传统商业化的锂离子二次电池主要以石墨为负极,其相对理论比容量(372 m Ah g-1)较低,迫切需要研发高比容量负极材料,以进一步提升锂离子二次电池的能量密度。碳材料是一类重要的锂电负极材料,其结构和性能与其原料紧密相关。重质油作为石油加工过程中的副产品,产量巨大,主要由长链碳氢化合物和多环芳烃组成,其含碳
随着世界范围内原油资源的重质化和劣质化加剧,在石油炼制中承担着重要角色的催化裂化工艺所面临的挑战越来越大,日趋严格的环保法规和人们对清洁油品的需求都促使着催化裂化工艺被不断地改进和优化。重油中的芳烃含量很高,尤其是挥发性和生物毒性都很大的稠环芳烃对环境有着很大危害。通过催化裂化工艺处理重油,不仅可以消耗掉部分稠环芳烃,减少污染;还可以副产一定的芳烃资源,增加炼厂效益。Y型分子筛作为催化裂化中的核心
油煤浆是煤/重油浆态床加氢共炼的原料,作为一种固液分散体系,其稳定性下降会导致大量固体颗粒沉积与堵塞管道,影响油煤浆的储存、输送及反应,提高油煤浆的稳定性是煤/重油浆态床加氢共炼工艺的关键技术之一。因此,本论文以固含量为稳定性评价指标,以干基无灰煤转化率及轻油收率为反应性能评价指标,分别考察了添加剂类型及加入量对不同类型油煤浆稳定性及反应性能的影响,并通过SEM、FT-IR、XRD及粒径分析等表征
煤-油共炼是一种煤和重油共处理生产轻质油品的工艺过程,该工艺在我国煤炭清洁利用中已取得突破性的进展,但其反应机理还不完善,有很多实验现象难以从现有的反应机理去解释,另外,产物半焦的性质差一直是一个亟待解决的难题。为了探索生产优质半焦的工艺条件,本文对影响煤-油共炼反应的因素进行研究。目的是在维持30%左右液体产率的同时,降低半焦的硫含量。研究不仅可以为工业生产过程中改善半焦的性质提供理论参考,还能