基于压缩感知的管道漏磁检测数据压缩方法研究

来源 :东北大学 | 被引量 : 0次 | 上传用户:chenyuxun2005
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着管道漏磁检测技术的快速发展,对腐蚀、裂纹等缺陷数据检测精度的提升需求呈现几何式上升趋势。因此,需要增加传感器的种类与数量,从单一的轴向管道漏磁检测增加到三轴全高清管道漏磁检测,特别是在进行海底管道检测时,单次检测的距离也逐步增加,必然会产生庞大的实时数据存储量。而单次检测过程中,由于管道内检测器的存储结构空间有限,合理的管道漏磁数据压缩方法,既有利于提高压缩率,加快处理速度,又能保留漏磁数据的特征信息,对管道漏磁检测技术的发展至关重要。本文针对管道漏磁数据的稀疏化过程和数据重构过程进行了研究分析。主要从以下几个方面展开研究:第一,针对传统漏磁数据压缩过程,从压缩性能角度出发,分析对比了传统工业数据压缩方法和性能评价指标,总结了传统方法的优势与不足。首先,分析了几种主要压缩方法;其次,归纳了常规的压缩性能指标;最后,评估了这些压缩方法在管道漏磁检测领域的适用程度。第二,针对漏磁数据的稀疏化过程,观测值数量与漏磁数据稀疏性对重构准确率的影响,设计了基于压缩感知的管道漏磁检测数据稀疏化方法。分析了漏磁数据的稀疏性,挑选出适合的稀疏变换基,从而进行压缩感知。通过实验对比由不同观测矩阵进行漏磁数据稀疏化的性能,总结出数据稀疏度和观测值的数量对重构准确率的影响,选出不同类型漏磁数据适用的观测矩阵,最终设计出基于压缩感知的管道漏磁检测数据稀疏化方法。第三,针对压缩性能与数据重构效果之间的矛盾,从漏磁数据自身特征出发,设计了基于自适应压缩感知的漏磁数据压缩方法,增加了压缩量并保证了重构效果。依据管道漏磁数据的特征,对漏磁数据的重要程度进行划分。根据评判后的结果,选择相应的观测矩阵对漏磁数据进行相应重要程度的稀疏化处理和数据重构,最终研究出基于自适应压缩感知的管道漏磁数据压缩方法,在保证漏磁数据重构效果不变的前提下,提高了整体压缩性能。进行了相关实验分析,验证了该方法对径向漏磁数据、带噪声的漏磁数据和海底管道漏磁数据的压缩效果。第四,针对漏磁数据重构过程,提出了基于压缩感知的管道漏磁数据重构方法,实现了较好的重构效果。通过实验分析比较了几种压缩感知数据重构方法的重构性能,将这几种方法应用于经观测矩阵稀疏化后的漏磁数据,进行数据重构,并对重构效果进行了对比分析。最后总结全文,并对需要进一步研究的方向进行了展望。
其他文献
马氏体相变是材料科学与工程领域重要基础理论,是钢铁材料热处理强化的主要手段。马氏体相变驱动力受奥氏体在Ms点的屈服强度、母相奥氏体缺陷密度以及应力场等的影响。一般情况下,低碳钢(Wc<0.20%)或低碳合金钢在强烈淬火(5%-10%NaCl或10%NaOH水溶液)后,才能获得板条状马氏体;工业纯铁需要105-106℃/s的冷却速度才能淬成板条马氏体。压力是一种有效的调控方法,它的独特之处在于不用改
各种便携式移动电子设备,新能源汽车以及大规模储能技术的迅速发展,对于锂离子电池性能提出了更高的要求。目前商业化负极材料石墨的理论容量仅为372 mAhg-1,不能满足锂离子电池性能提升的进一步需求。过渡金属氧化物因其储量丰富、合成简单、成本低、理论容量高以及电化学稳定性高等优点有利于成为下一代锂离子电池材料。但其充放电过程中体积变化较大,电导率和锂离子扩散能力较差等缺点限制了其实际应用。为了解决上
过渡金属氧化物逐渐成为为锂离子电池负极材料的热点之一。其中,TiO2负极材料具有安全、环境友好、循环寿命长以及倍率性能高等优点。但其电子电导率低,离子扩散系数小,在高电流密度时电解质/电极界面电阻大,这些缺点限制了 TiO2负极材料的应用。为了解决上述问题,本文以TiO2基纳米材料为研究对象,对其进行宏观及微观结构调控,获得电化学性能优异的TiO2基负极材料。首先,通过水热法合成纳米颗粒自组装的微
高熵合金是近些年发展起来的一种新型合金,具有非常优异的性能,应用前景广泛。铸态高熵合金大多为枝晶组织,存在成分偏析、疏松、晶粒粗大等缺陷。形变热处理和强磁场条件作为细化晶粒和调控合金组织性能的有效手段,能够大大改善铸态高熵合金的组织性能,对高熵合金的研究与应用具有积极作用。本文对感应熔炼得到的A10.3CoCrFeNi高熵合金铸锭在1200℃下保温10h均匀化处理之后进行90%和95%变形量的冷轧
光学回音壁模式(Whispering Gallery Mode,WGM)谐振腔由于拥有超高的品质因子、极小的模式体积、非常高的功率密度和极窄的光谱线宽,使其在一系列传感和技术应用中表现出了非常高的潜力,逐渐引起了科研工作者的关注。同时,材料科学、制造技术和光电传感方法的发展,也赋予了谐振腔新的功能、独特的传感机制和无与伦比的测量灵敏度。为了满足不同的传感应用要求,各种各样几何结构的谐振腔被研发出来
机器人抓取物体是机器人和真实世界交互必不可少的功能,对于人类来说抓取物体基本不需要思考就可以完成,但是对于机器人来说对于不同物体准确灵活的抓取却是一个高难度动作。机器人想要达到和人类抓取物体一样的灵巧性和交互性,还需要克服许多机械和计算问题。本文将二指机械手物体抓取和深度学习结合起来,对二指机械手在刚性物体(如工具、家用物品、包装物品和工业部件等)抓取位置选取问题上进行研究。由于传感器数据噪声和物
中国拥有丰富的煤炭资源和煤矿瓦斯资源,这意味着我国短期内仍不会改变以煤炭为主的能源结构。在煤炭资源开采过程中,被大量排空的煤矿乏风中由于存在含量极低的瓦斯气体,不仅引起了强烈的温室效应,还伴随着能源的巨大浪费。如何开发利用被浪费的煤矿乏风瓦斯,缓解温室效应一直是非常重要的研究课题。目前,关于煤矿乏风瓦斯的利用途径主要包括助燃空气燃烧、化学循环燃烧、(催化)逆流反应器的热能利用、集中器的甲烷富集等,
磁场测量有着悠久的历史,早在12世纪,司南作为最原始的磁场测量仪器在航海中被广泛应用。磁场测量在导航、环境监测、生物医学、航空航天和智能电网等诸多领域都有着至关重要的作用,逐步扩大的应用范围促使磁场传感器测量越来越准确、稳定性和分辨率越来越高、体积越来越微小型化。与传统磁场传感器相比,光纤磁场传感器具有体积小、重量轻、抗电磁干扰、灵敏度高等优点,进一步提高了磁场传感器的性能。近年来,光纤传感器与磁
层状金属复合材料近些年来在世界各国受到普遍的重视,铝合金由于密度小、耐蚀性好、塑性变形能力好、与异性材料结合力强等优势,因此广泛应用于层状金属复合板材研究和工业领域。本文以1060铝合金为基础,开展了 Al1060/TU2,Al1060/AZ31B,Al1060/TC4和Al1060/AZ31B/TC4层状金属复合板材的轧制实验,通过OM、XRD和SEM的显微组织测试以及拉伸、剪切、弯曲、硬度和冲
随着电子设备、电动汽车等产品的发展,人们对高能量密度储能设备的需求越来越迫切。电极材料作为储能设备的重要组成部分,已成为研究人员关注的重点。生物质碳材料因其原材料资源丰富且具有优异的结构为人们所关注,研究发现,通过从生物质废料前驱物热解得到的生物质碳材料作为钾钠锂离子电池负极有着较好的电化学性能。本文以玉米皮和核桃分心木作为原材料,以不同手段改性并研究其电化学性能:首先以玉米皮为原材料、氢氧化钾为