几类非线性振动系统的广义剩余谐波平衡方法研究及应用

来源 :浙江师范大学 | 被引量 : 0次 | 上传用户:hamainini
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于非线性振动现象存在于各个领域,因此研究非线性振动系统是至关重要的.而非线性振动系统是比较复杂的系统,求解其准确解也变得困难的,因此,许多学者提出了大量方法分析其近似解.而本文主要是采取了广义剩余谐波平衡方法,研究了三类非线性振动系统.第一类是约束悬臂梁的强非线性振动系统,第二类是静电驱动微梁的非线性振动系统,第三类是受到范德华吸引力的静电驱动微梁的非线性振动系统.再利用上述方法研究这三类系统的近似周期解.  本文的内容主要分为四章,第一章主要介绍本文的研究背景及研究现状.第二章主要是运用广义剩余谐波平衡方法研究约束悬臂梁,求出该系统的近似解.然后将求得的2阶谐波近似解分别与能量守恒方法求得近似解,同伦分析方法求得近似解,Runge-Kutta法数值解进行比较,并给出相图和时间历程曲线.第三章继续运用广义剩余谐波平衡方法研究静电驱动微梁,并进行数值模拟,将结果与其他三种方法得到的结果进行比较.第四章运用广义剩余谐波平衡方法研究受到范德华吸引力的静电驱动微梁,再进一步研究,当选取较大振幅时,近似解与Runge-Kutta法数值解的吻合程度.通过上述的三章内容,验证了广义剩余谐波平衡方法对这三类系统的可行性和有效性,进一步可以说明这种方法同样也适用于其他非线性振动系统中.
其他文献
与线性规划相比,半定规划是把向量变量由矩阵变量代替,向量的非负性由矩阵的半正定性代替。因此,半定规划是线性规划的推广。求解半定规划的方法很多,最成功的方法是利用半定规划
近年来,利用博弈论研究供应链问题的文献越来越多,但大多文献是基于期望效用理论,即假定局中人是完全理性的,可是随着研究的逐渐深入,人们发现很多现实问题无法很好地得到解释.为了避免这一弊端,本文充分考虑了市场需求不确定性以及局中人的有限理性,通过引入局中人的风险因子以及利用前景理论分别研究了考虑现货市场的由一个供应商及一个制造商组成的供应链系统.本文的具体内容如下:第一章,绪论.给出了本文的研究背景以
本篇硕士论文由四部分组成.第一章为预备知识.首先介绍了非线性数学物理方法的研究背景,主要是针对非线性波及孤立子理论的物理问题展开了简要的探讨,进而简要介绍了近年来的
学位
对于一般的随机微分方程,若漂移系数及扩散系数为Lipschitz连续函数,则该方程的唯一解是平方指数可积的。   本论文主要考虑带有一个多值极大单调算子的多值随机微分方程。
本文研究了动力系统中同宿轨的存在性问题,包括二阶系统,Hamilton系统和Dirac方程.在一些新的或更宽泛的条件下我们得到了上述问题同宿轨的存在性,主要内容安排如下:   第一章
本文针对三元离散神经网络模型的稳定性与分岔进行讨论。研究的课题主要有:平衡点的稳定性、周期解的存在性以及分岔方向等问题。对于模型的研究主要分为两个方面:一方面是不具
分数阶微分方程是数学领域里一个非常重要的分支,并且微分方程的正解问题已经发展了很长的时间.本文分别讨论了参数影响下奇异的分数阶微分多点边值问题正解的存在性和奇异的