【摘 要】
:
随着互联网的飞速发展,人们越来越喜欢在社交媒体上发表自己对热点事件的看法和意见,面向社交媒体评论的情感分析逐渐成为当下的研究热点。传统的情感分析方法大多基于有监督的学习,需要大量的有情感标注的数据。然而,情感标签的标注需要大量的人力和时间,在实际中可行性较差。 针对情感标注数据不足的问题,本文提出了基于动态阈值算法和多分类器模型的半监督情感分析方法。该方法以迭代的方式自动标注数据,并通过动态阈值
论文部分内容阅读
随着互联网的飞速发展,人们越来越喜欢在社交媒体上发表自己对热点事件的看法和意见,面向社交媒体评论的情感分析逐渐成为当下的研究热点。传统的情感分析方法大多基于有监督的学习,需要大量的有情感标注的数据。然而,情感标签的标注需要大量的人力和时间,在实际中可行性较差。
针对情感标注数据不足的问题,本文提出了基于动态阈值算法和多分类器模型的半监督情感分析方法。该方法以迭代的方式自动标注数据,并通过动态阈值算法对自动标注的数据进行筛选,不断扩大有标注的训练数据。筛选阈值随着迭代次数的增加而减小,迭代前期较高的阈值可以保证数据的质量,减少误差在迭代中的累积,迭代后期较低的阈值可以保证最终训练集中有足够多的有标注数据。同时,该方法还改进了传统的多分类器模型并提出了权重投票策略,将分类器在预测类别上的可信度和预测样本的可信度的乘积作为最终的投票权重,提高了模型的泛化能力。
实验结果表明,本文提出的情感分析方法较其他对比方法具有更优的情感预测效果,有力地证明了本文提出的动态阈值算法和权重投票策略的有效性。另外,基于长短期记忆的深度学习模型情感预测效果好于基于支持向量机的机器学习模型,进一步说明了基于深度学习的情感分析方法更能挖掘抽象的情感特征,具有更优的情感预测效果。
其他文献
利用微多普勒雷达对人体行为进行识别,在灾后搜救、智能家居、无人驾驶、安全监控等领域都有广泛的应用,具有极大的研究价值。面向实际应用,本文开展了微多普勒雷达图像去噪和人体行为识别的研究,分别提出了去噪模型和人体行为识别模型,并利用雷达仿真数据和实测数据对所提模型的性能进行了评估,主要研究内容及创新性工作如下。 为了去除微多普勒雷达图像中的噪声,提出了一种基于生成对抗网络(Generative Ad
作为计算机视觉领域的基本问题之一,目标检测系统实现了对图像中每个目标对象的分类,同时在目标中心点四周绘制大小适当的边界框来对目标进行定位。目标检测任务是视频分析、场景理解等其他计算机视觉任务的重要基础。近年来,得益于深度学习技术的飞速发展,智能安防、自动驾驶等领域的研究进展迅速,新目标检测算法层出不穷。目标检测技术的突破使得对快速准确的目标检测系统的需求越来越多,诞生了系列算法。 虽然目标检测算
图像质量是影响机器视觉决策的决定性因素。在工业检测场景下,由于环境光照、被测物体表面材质、反射率及三维形状等因素的影响,拍摄图像容易出现采光不同的现象,导致过曝光区域与曝光不足区域同时出现,这些区域一旦形成,无法通过图像处理的手段进行恢复。由于图像细节信息的丢失,影响了工业检测的准确性和可靠性。基于上述问题,本文提出了使用自适应照明系统,此系统主要思想是采用主动改善光照条件的方式进行自适应补光:在
随着立体成像技术的发展,立体图像逐步走进人们的生活,但观看质量不好的立体图像会引起人们心理和生理上的不适,这严重限制了立体成像技术的发展,因此找到一种能够系统有效的评价立体图像质量的算法已成为了相关领域的研究热点。论文的主要工作如下: 第一,论文提出了一种基于自适应的融合图像与集成学习的立体图像评价算法。首先考虑到增益控制和增益增强等人眼视觉机制,模拟双目视觉信息在视觉通路中的融合过程,将立体图
随着计算机技术与硬件设备的发展,人体关节三维坐标数据逐渐获得学术界与工业界的重视,应用到很多领域,如在影视动画作品中驱动虚拟人物、在体育训练中记录测量数据、在网上购物中虚拟试衣、以及在游戏中体感交互等,逐渐渗透到人们的生活中。人体关节三维坐标数据通常由彩色图像或深度图像经由人体轮廓提取、虚拟骨骼曲线提取、二维关节点定位、相机校准等算法获得,获取到的数据由于运动复杂或存在遮挡、衣服纹理相似或材质柔软
光电振荡器(optoelectronic oscillator, OEO)作为一种新型高性能振荡器,由于其具有高振荡频率、低相位噪声和高频谱纯度等特性,受到越来越多学者的关注和研究。随着OEO的相位噪声和边模抑制性能的不断完善,频率可调谐性成为了其实用化的阻碍,如何在保证低相位噪声和高边模抑制性能的同时产生频率可调谐的振荡信号成为了研究的热点。除了上述特性,OEO的振荡频率对于腔长变化特别敏感。利
未压缩的原始视频信号包含巨大的数据量,视频压缩技术的进步使得在有限的带宽中传送高质量视频成为可能。尽管现代视频编码技术已经具有极高的压缩效率,但随着互联网的兴起及超高清显示拍摄设备的普及,视频的数量和质量呈爆炸式增长,当前视频编解码标准的压缩效率仍然难以满足人们对高数量高质量视频的需求。另一方面,近些年在硬件强大的计算能力和互联网大量可获得的数据的支持下,深度学习展现出巨大潜力并在众多领域取得了重
随着智能机器人在日常生活中的普及和自动驾驶技术的发展,同时定位与建图(Simultaneous Localization and Mapping , SLAM)受到广泛的关注。机器人在未知环境下如何进行自主定位与地图构建,是SLAM需要解决的问题。目前,SLAM是室内移动机器人以及室外无人驾驶汽车研究的重要课题之一。 SLAM根据传感器的类型分为激光雷达SLAM和视觉SLAM,激光雷达价格昂贵,
立体匹配技术是当前计算机视觉领域内的研究热点和前沿问题,相较于基于结构光、飞行时间原理的主动式深度获取方式,这类被动式深度获取方式具有分辨率高、功耗低、成本低的优势,在航天、测绘、自动驾驶等领域得到广泛的应用。在立体匹配技术中,通常采用立体匹配算法获取场景的视差,并将视差用于场景深度的计算。在立体匹配算法中,基于图像滤波的匹配算法具有计算复杂度低、运行效率高的特点,其成为当今学界和业界研究的重点,
人体动作识别是目前计算机视觉以及人工智能领域的一个热点课题,在下一代智慧家居,无人商店,智能视频监控,互动娱乐等领域具有广泛的应用前景。早期的人体动作识别研究主要基于RGB视频,容易受到视角变化、光照变化、复杂背景等因素的影响,人体动作识别的精度一直不能令人满意。随着深度传感器技术的不断进步,特别是廉价器件的出现,三维数据如深度图、骨骼数据变得更容易获取。与RGB数据相比,三维数据能够提供场景的三