银杏叶提取物四种制剂溶出度和Beagle犬药动学及体内外相关性研究

来源 :北京中医药大学 | 被引量 : 1次 | 上传用户:qiuxi1984
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
银杏在地球上已经有约2亿年的历史,2000年前人们就发现银杏叶具有广泛的药用价值。银杏叶提取物及其制剂对于老年痴呆、防治记忆力下降和心脑血管疾病等都具有显著的疗效。本实验通过比较四种已经上市的银杏叶提取物固体口服制剂的体外溶出度和体内药动学,比较不同制剂之间的差异,并通过反卷积分法建立了四种银杏叶提取物制剂中四种萜内酯成分的体内外相关性。1文献综述本部分综述了银杏叶的化学成分、药理作用,银杏叶提取物和其制剂的发展包括银杏叶提取物的相关制剂药动学的研究进展,药物体外释放与体内药动学的相关性研究进展等。2银杏叶提取物四种制剂溶出度比较本部分选择对四种银杏叶提取物制剂(分散片-银欣可、滴丸-傲士、普通片-金纳多和普通片-依康宁)中的4种萜类内酯化合物白果内酯Bilobalide(BB)、银杏内酯A Ginkgolides A(GA)、银杏内酯 B Ginkgolides B(GB)、银杏内酯 C Ginkgolides C(GC)进行体外溶出度实验,并用相似因子法f1、f2评价了四种制剂两两之间溶出曲线的相似性,探讨不同银杏叶提取物制剂之间的差异。结果表明:除银欣可与傲士中BB的溶出曲线相似因子f1=9.15、f2=59.14具有相似性外,银欣可与傲士的其他成分及其他制剂两两之间各个成分都不相似(f2<50),银杏内酯A、B、C在四种制剂之间都不相似(f2<50)。提示银欣可、依康宁、金纳多和傲士在体内的过程可能具有较大的差异。3银杏叶提取物中7种主要有效成分在Beagle犬血浆中的UPLC-MS/MS测定方法的建立与验证本部分应用超高效液相串联质谱技术(UPLC-MS/MS)建立了快速、灵敏、准确地同时检测血浆中3种银杏叶黄酮成分槲皮素Quercetin(QCT)、山柰酚Kaempferol(KMF)、异鼠李素Isorhamnetin(ISR)和4种萜类内酯化合物白果内酯Bilobalide(BB)、银杏内酯A Ginkgolides A(GA)、银杏内酯B Ginkgolides B(GB)、银杏内酯 C Ginkgolides C(GC)浓度的分析方法。该方法专属性、回收率、基质效应,日内、日间精密度,6 h室温稳定性和6 h、12 h的进样器内稳定性均符合要求。该方法简便、快速,准确—色谱柱为ACQUITY UPLC BEH C18 柱(100 mm×2.1 mm,1.7μm),柱温 40。℃,进样器温度 10。℃,流速为0.4 mL·min-1,流动相:A0.1%甲酸水,B乙腈,梯度洗脱0-1 min95%A,1-1.5 min 95%-60%A,1.5-3 min 60%-57%A,最后1min回到95%A,分析时间4 min。4银杏叶提取物四种制剂Beagle犬口服给药后药动学比较通过比较银杏叶提取物四种制剂Beagle犬口服给药后药动学可知,制剂因素对不同银杏叶提取物制剂中各成分在生物体内的吸收都有影响。总体来说,分散片(银欣可)和滴丸(傲士)较普通片剂(金纳多和依康宁)而言,对银杏叶提取物制剂中黄酮类成分的吸收更好,且以槲皮素最为明显;萜类内酯成分的吸收情况普通片剂较分散片和滴丸有显著优势。另外,滴丸较其他三种制剂而言,各黄酮类成分和萜类内酯均有一定速释效应,且对黄酮类成分速释作用较为显著(P<0.05)。固体分散体(银欣可和傲士)中黄酮类成分的吸收情况更好,但萜类内酯却以普通片剂更好,这可能会影响不同银杏叶提取物制剂的临床疗效。5体内外相关性分析采用反卷积分法(Deconvolution)研究银杏叶提取物四种制剂中萜类内酯的体内外相关性,采用kinetica4.40软件进行分析,以累积溶出百分率F表示体外溶出,以各个时间点的血药浓度时间曲线下面积AUC表示体内吸收,各个时间点的AUC占AUClast的比值用 Fraction Input(R)表示。本实验采用反卷积分法研究银杏叶提取物中四种萜类内酯成分的体内外相关性,根据实验数据可看出银杏内酯A、B、C在四种不同制剂中均能表现出良好的体内外相关性,属于点对点相关,符合A水平相关。即通过体外溶出度的测定可以预测银杏内酯A、B、C在体内的生物利用度。
其他文献
近年来糖尿病发病率逐年升高,而且据世界卫生组织调查指出,2型糖尿病发病率呈现年轻化趋势。通过查阅近几年有关2型糖尿病的年轻化的研究,了解到2型糖尿病是胰岛素抵抗和胰岛
随着经济社会的迅速发展,不同区域的交流合作和人口流动变得更加频繁,人们对出行速度和效率提出了更高的要求。然而在地表环境中,受稠密大气环境影响,一般交通工具的运行速度难以逾越400km/h,所以一种高速度、低能耗、安全环保的真空管道运输系统应运而生。真空管道车辆因其在狭窄的管道内高速运行,车辆头部会积聚大量淤塞空气,导致气动阻力增加,所以需要对真空管道车辆的气动特性进行分析研究。为避免空气淤塞在车辆