论文部分内容阅读
Flash存储器由于其高集成度、低功耗、高可靠性和高性价比等优点,在非易失性存储器市场中占据了主要的份额。但随着微电子技术的发展,Flash存储器也面临了一系列的挑战,如更低的功耗,更快的速度,更高的集成度等。对于传统多晶硅浮栅存储器而言,多晶硅浮栅的厚度随着器件特征尺寸的减小而同步减薄,这使得具有高能量的入射电子增多。大量的高能入射电子对阻挡氧化层造成损伤,产生更多的陷阱和缺陷,影响器件的可靠性。为了克服这一问题,以金属替代多晶硅作为浮栅的方案被提出来,因此对金属浮栅存储器性能的研究和改善得到了比较广泛的关注。本论文主要以金属浮栅存储器为研究对象,通过对浮栅结构进行优化,改进存储器编程/擦除性能。金属浮栅存储器的浮栅材料的功函数对器件性能有很大影响,因此本论文首先对浮栅材料的功函数对器件性能的影响做了研究。在此基础上通过调整和优化金属浮栅结构,改变沟道内电场分布和浮栅耦合电势,研究了金属浮栅结构对存储器性能的影响。结果表明,对金属浮栅结构进行优化后,沟道电场分布出现局部峰值,提升了沟道内热电子的动能,从而促进编程过程中电子的注入效率;同时,浮栅中耦合的电势也得到提升,进而增强编程过程中的垂直电场,进一步提高热电子的注入效率。在擦除过程中,由于垂直电场的增强,使存储在金属浮栅中的电荷更容易通过F-N隧穿回到衬底。通过对比,优化后的器件在相同的阈值电压改变量(编程和擦除过程中分别为3.5V和-3.5V)情况下所需的编程时间缩短了77%,擦除时间缩短了52%,器件的编程/擦除性能得到了提升。SOI技术对器件性能有很大的影响,因此本论文研究了SOI衬底上的金属浮栅存储器的性能,并提出了改进方案。模拟结果表明,SOI顶层硅厚度为5nm时存储器的编程和擦除性能达到最优。在此基础上,本论文对在SOI衬底上的金属浮栅存储器的浮栅结构也进行了优化。优化后存储器的存储窗口提升了32%,并且在相同的阈值电压改变量(编程和擦除过程中分别为3.5V和-3.5V)情况下所需的编程时间缩短了73%,擦除时间缩短了64%。在此基础上本论文研究了高k材料作为器件控制栅介质层时对器件性能的影响。仿真结果表明,高k材料作为控制栅介质层能进一步提升器件的编程/擦除性能。最后,设计了一种制造优化的SOI金属浮栅存储器的工艺流程,该工艺与标准硅CMOS技术相兼容。借助Silvaco TCAD工艺模拟工具,论文中模拟了SOI金属浮栅存储器的工艺流程。通过模拟仿真,证实了本文提出的方案的可行性。