论文部分内容阅读
预测广泛的应用到生活中的各个领域中,目前常用的预测方法有很多种,而支持向量机(SVM)是一种基于统计学理论的新方法,具有很好的推广能力以及全局最优解,在解决小样本、非线性等问题上有着很大的优势。但由于标准的SVM求解的是二次规划问题,计算量比较大,同时单一的预测方法都存在精度都不是很高,参数不易选择等问题,针对这些问题做了如下研究工作。本文首先介绍了预测的研究意义以及常用的预测方法,然后对电力短期负荷数据分析得到其时间序列是非线性、非平稳的,而经验模态分解(EMD)是一种自适应的非线性处理方法,通过将原始的时间序列分解,可以得到一系列相对比较平稳的分量,由于EMD可能会存在模态混叠的现象,因此在此基础之上采用集合经验模态分解(EEMD)对时间序列进行分解。其次,针对SVM计算量较大的问题,采用了最小二乘支持向量机(LSSVM),简化了计算,然后结合EEMD提出了EEMD-LSSVM的组合预测模型,并将这一预测模型应用于电力短期负荷预测中。首先利用EEMD对原始数据进行分解,然后对分解出来的各个分量分别建立LSSVM模型,再通过贝叶斯证据框架对模型参数进行优化选择,最后将各分量的预测结果叠加得到最终的预测值,仿真结果表明组合预测模型取得了较好的预测效果,并且EEMD更适合对非平稳数据进行处理。最后,虽然LSSVM在一定程度上简化了计算,但LSSVM丧失了稀疏性和鲁棒性,基于此,采用了加权最小二乘支持向量机(WLSSVM)。然后对电力短期负荷数据进行混沌特性识别,将混沌理论中的相空间重构方法用于预测中,再结合和EEMD建立了基于混沌理论的EEMD-WLSSVM的组合预测模型。通过对原始数据进行EEMD分解,然后对每个分量求取延迟时间和嵌入维数进行相空间重构,建立WLSSVM的预测模型,最后将各分量的预测结果相加得到最终预测结果,仿真结果表明,取得了比单一预测模型更好的预测效果,验证了该模型的有效性。