解析函数空间的循环元及相关算子理论

来源 :汕头大学 | 被引量 : 4次 | 上传用户:dengpengfei
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要给出复平面的单位圆盘上的对数a-Bloch空间、对数VMOA空间、Qp空间的循环元的刻划以及Qp空间的零点生成的不变子空问的刻划;   研究对数a-Bloch空间上的点乘算子和复合算子以及对数Bloch空间上、对数Bloch空间与a-Bloch空间之间的加权复合算子的有界性与紧性。   第一章主要介绍了一些函数空问的循环元及点乘算子、复合算子及加权复合算子的概念;列出了与本文内容密切相关的一些已有结论.   第二章给出对数a-Bloch空间上的点乘算子和复合算子的有界性的刻划;   给出了当0
其他文献
随着统计建模思想不断深入到社会生活各个方面,所考虑的模型选择问题的维数可能会很高.在处理高维数据时,统计学家已提出多种惩罚方法来进行模型选择和参数估计,例如LASSO,MCP,SCA
互素分解是解决模型降阶问题的一种行之有效的方法.近来随着人们对不确定系统模型降阶问题的关注,互素分解也显得越来越重要.因为利用平衡截断来实现模型降阶虽然能够继承系统
Hastie和Tibshirani(1993)[1]提出了变系数模型(varying coe±cientmodel)Y=P∑I=1αi(U)Xi+σ(U,X)∈,(1)其中(Y,U,X1,X2,…,Xp)T为随机向量,X=(X1,…,Xp)T,∈为随机误差,且
人脸检测作为人脸信息处理领域中的一项关键技术,在安防、视频会议等实际应用领域有着广泛的应用。但是由于人脸的复杂性和实际应用中的较高要求,人脸检测仍是研究中的难点问
近年来点采样几何作为一种新的曲面表示方式,受到了广泛的关注。它无需存储和维护全局一致的拓扑信息,能对复杂的三维模型进行高效的绘制和灵活的几何处理,因此在处理复杂的