【摘 要】
:
陶瓷材料作为三大基础材料之一,以优良的理化特性在工业界被广泛应用。但由于传统制备工艺的限制,可应用于工业上的陶瓷产品往往仅能被制作成简单的三维结构。同时,随着科技的发展,特种陶瓷、尤其是适用于高精尖领域的高性能陶瓷,受到社会各界的广泛关注,需求量日渐上涨,发挥着越来越重要的作用。复杂三维结构精密陶瓷是微机电系统、微纳光学、微纳传感等诸多应用器件的基础,其一体化高精度制造是当前学术界研究热点也是产业
论文部分内容阅读
陶瓷材料作为三大基础材料之一,以优良的理化特性在工业界被广泛应用。但由于传统制备工艺的限制,可应用于工业上的陶瓷产品往往仅能被制作成简单的三维结构。同时,随着科技的发展,特种陶瓷、尤其是适用于高精尖领域的高性能陶瓷,受到社会各界的广泛关注,需求量日渐上涨,发挥着越来越重要的作用。复杂三维结构精密陶瓷是微机电系统、微纳光学、微纳传感等诸多应用器件的基础,其一体化高精度制造是当前学术界研究热点也是产业界亟待突破的瓶颈问题。传统方法制备陶瓷的孔隙可控性低,限制其性能提升,基于增材制造技术的有序孔隙结构设计及研发新型陶瓷材料让复杂的陶瓷产品成为可能。而最近发展的基于有机前驱体转化陶瓷光固化成型及烧结后处理的间接制备法,不仅可避免裂纹,还能够多层次、高精度地对物理结构进行有序调控;同时,在化学材质方面,陶瓷前驱体转化技术可重组多组份分子结构,从而进行材料性能调控,获得宏/微观下多尺度材料的先进结构陶瓷。本文利用三组不同的聚硅氧烷作为预陶瓷聚合物(Pre-Ceramics Polymers,PCPs)配制了Si基前驱体光敏树脂;通过基于光聚合的数字光处理(Digital Light Processing,DLP)增材制造技术成功打印出多种不同特征的点阵结构;对打印所得素坯进行清洗、后固化及在Ar氛围下热解,顺利转化为具有不同晶格结构的轻质、高强前驱体转化SiOC陶瓷。将聚硅氧烷与光敏丙烯酸酯单体简单混合制备所得的光固化前驱体树脂,在不同的加热和振荡条件下均展现出良好的流变性及稳定性。通过优化树脂配方和打印参数,可以高精度地制造出复杂的微米级结构。打印所得的前驱体样件在600~1000℃高温裂解,收缩均匀无堵塞、并保留了良好的结构特征。在宏观/微观尺度上,所得陶瓷样件几乎完全致密,表面质量高、未观察到裂纹等缺陷。采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、拉曼光谱、XPS等手段研究了元素和原子键的化学变化,证实了热解过程中前驱体的陶瓷化。同时,对一系列机械性能进行表征,测得1000℃下所得陶瓷样件体积收缩42.01%、质量损失70.37%、表观抗压强度19.08MPa、弹性模量38.96GPa和压痕硬度5.82GPa;并与其它各结构(致密、泡沫、晶格、蜂窝等)下陶瓷材料相比,本文所得SiOC点阵结构具有优异的比强度(5.74×104N·m/kg)。
其他文献
偏光片作为一种常见的偏振光学元件,是显示面板的核心组成部件之一,具有极为广泛的应用。偏光片质量对显示面板的良率有重要影响,若存在外观缺陷的偏光片流入到组装环节,可能导致整个面板的报废。因此,无论是偏光片生产厂商还是显示面板生产厂商,都需要进行严格的偏光片外观缺陷检测。而在生产过程中,检测出缺陷后,品质人员还要分析缺陷的成因,从而及时改进生产工艺和流程,因此还需要对检测出来的缺陷样品进行分类。在目前
太赫兹波(THz)是频率介于0.110 THz范围内的电磁波,其在光谱中介于微波与红外之间,具有许多特殊性质,在成像、无线通讯等方面受到广泛关注。但目前太赫兹频段的小型化调控器件还是较为缺乏,这极大地影响了对太赫兹波的进一步探索。近年来,由一系列亚波长人工结构组成的超表面,由于其对电磁波波前的局部优越调控能力,引起了光学和红外领域的广泛研究。这一优势也可以引入到太赫兹频域范围内去解决空间调制器件不
二维硒化铟因其优良特性而在光电领域大放异彩,如作为阵列结构器件、柔性电极和宽带光谱高速响应器等方面都能体现其价值。但是此类研究主要集中在可见光和近红外光谱范围,其非线性特性及中红外波段下的响应却鲜被研究。本文旨在研究二维硒化铟在红外波段的光学特性,分别建立了Z扫描系统和光谱成像系统,研究了该样品的非线性特性和光谱成像特点。研究结果表明二维硒化铟在近红外波段具有非线性效应,在宽带中红外波段内具有很强
自从石墨烯被发现,因为其优异的表现引起了越来越多科学家的关注,从而衍生出了许多类石墨烯结构的新型二维材料。一些二维纳米材料在物理学、化学领域具有优异的表现。本文所用的二维半导体纳米材料硫化铋(Bi2S3)就有非常好的物理学表现,对不同波长的光有很好的光学响应,可以应用于多种光电器件的设计,比如全光开关,全光信息传递装置,全光二极管,热电制冷器、电气开关等等。然而,对硫化铋的非线性效应报道非常少,在
表面增强拉曼散射(Surface-enhanced Raman Scattering,SERS)是一种高灵敏度的表面检测技术,入射光和待检测分子发生相互作用后,根据散射光的拉曼光谱可以准确,快速的对分子的结构进行特一性检测。随着拉曼光谱的研究发展,拉曼光谱更多的被应用到实际生活中,癌症检测,药物分析,环境污染,毒品检测以及爆炸物等,范围很广,具有很大程度上的意义价值,因此一直受到人们的青睐。表面增
石墨烯具有优异的电学、光学、机械特性,基于石墨烯的光电探测器得到迅速的发展。然而,原子级厚度的石墨烯吸光度低且缺乏增益机制,这限制了石墨烯基光电探测器的性能。层状材料量子点具有良好的光吸收,能带隙可调等优点。构建层状材料量子点/石墨烯复合结构不仅可以提高石墨烯的吸光度,而且具有良好的电荷分离能力,从而可提高石墨烯光电探测器的响应度。探头超声剥离法是一种有效制备层状材料量子点的方法,该方法的关键在于
三维碳纳米材料(3D Carbon Nanomaterials,3D CNMs)由于其优异的电学光学、磁学性能而受到人们的关注。三维碳纳米材料通常是由多种碳纳米材料组合在一起形成的系统,其复杂的组分给材料带来了大量的边界和表面缺陷,这给三维碳纳米材料带来了独特的应用优势。但是关于三维碳纳米材料的研究多集中在电学领域,尤其是上转换发光的三维碳纳米材料鲜有报道。碳点(Carbon Dots,CDs)作
二维层状材料相对于其体材料来说具有许多独特的物理特性被广泛应于光电子器件和柔性电子器件研究中。当材料减小到纳米级厚度时,材料的比表面积增大,由于量子限制效应,二维材料对光的吸收调控能力产生变化。此外,施加外部电压、应力或改变材料的厚度、缺陷态等可以调控二维材料的光学带隙,使得二维材料在宽波段可以产生很强的光调制作用。通常来说,随着激发光强度的不同,材料对光的吸收可以分为线性吸收和非线性吸收。线性吸
淡水资源短缺已经成为一个全球性问题。而太阳能驱动的界面海水蒸发是新兴的最有前途的技术之一,通过对海水进行加热、蒸馏、净化等处理来获得更高品质的生活用水。在这项工作中,我们首次将无水乙醇脱水处理后的胡萝卜碳化,得到的生物炭材料作为海水蒸发器,这种材料作为一种集光热转换、海水蒸发、自漂浮等功能为一体的多合一光热材料,可实现高效的太阳能海水蒸发。胡萝卜作为一种天然的植物,它的体内含有大量可以运输水分和营
稀土掺杂上转换发光材料具有很多优异的性能,比如发光波段可以从紫外区域到红外区域,发光强度高,有很好的光稳定性,并且毒性低。这些优异的性能使其在生物医学、激光应用、3D打印、防伪、温度传感等各个领域都有着广阔的应用前景。目前研究以Na YF4纳米晶为基质材料的稀土掺杂上转换发光材料的应用大多数在蓝光,绿光这一区域范围,在紫外波段的应用少有报道,这限制了它的研究与应用。为了了解其在紫外波段的发光性能,