论文部分内容阅读
纵观人类社会的演进历程,技术创新一直是推动地区乃至国家经济发展的内生动力,是各国抢占国际竞争高地的重要手段。近年来,随着互联网技术迅猛发展、计算机运算能力和运算速度大幅提升以及算法有效性取得极大突破,人工智能在世界范围内取得了突破性进展,并迅速将人类社会送入了智能时代,加速改变着人类社会生产生活的各个方面。基于此,世界各国纷纷围绕人工智能展开了新一轮角逐,美、日、德、法等国先后颁布了一系列扶持人工智能产业发展的政策措施,以期借人工智能之势在新的历史时期抢占国际竞争中的优势地位。就中国而言,人工智能作为一项引领新一轮科技革命和产业变革的战略性技术,正在受到党中央的高度关注。习近平总书记在2018年10月31日政治局第九次集体学习时强调,要推动我国新一代人工智能健康发展。在2018年12月21日中央经济工作会议上再次强调要加强人工智能等新型基础设施建设。在2019-2020年,进一步强调要积极推动人工智能与媒体、教育、社会治理以及疫情防控等领域深度融合。届此,中国的人工智能及其与经济社会深度融合踏上了新征程。人工智能作为一种技术进步,在与经济社会的深度融合过程中具体表现为各种有形(机器人)和无形(算法、系统等)的技术创新。那么,人工智能技术创新如何影响经济增长?通过什么渠道影响经济增长?“索洛悖论”是否存在?从长期而言,是否会使经济呈现指数级增长趋势?从国际层面而言,人工智能在全球范围内的加速渗透是否会进一步扩大未来南北差距?围绕人工智能的这一系列问题具有相当重要性,但目前尚未有系统性研究,甚至在一些方面仍存在研究空白。为此,论文以经济学为主,结合计算机科学、哲学、数学等多学科理论知识,综合运用历史分析与比较分析相结合、归纳与演绎相结合、理论研究与实证分析相结合、静态分析与动态分析相结合等研究方法,按照“总-分-总”的结构谋篇布局,以研究人工智能对经济增长影响效应。论文主要内容如下:总论部分在系统梳理相关文献、详细阐述理论基础以及清晰刻画人工智能影响经济增长的典型事实基础上,探析了人工智能在向经济社会渗透过程中表现出的四大经济效应:智能渗透效应、边界延展效应、知识创造效应和自我深化效应,并对影响经济增长的三大主要因素(劳动、资本和生产技术)进行分析。在此基础上,通过分析人工智能四大经济效应作用于劳动、资本和生产技术对经济增长的影响效应,提出由劳动渠道、资本渠道和生产率渠道三条渠道构成的人工智能影响经济增长的总体分析框架。分论部分将理论分析和实证检验相结合逐一探讨了人工智能影响经济增长的劳动渠道、资本渠道和生产率渠道。此外,由于数据不可得,无法通过实证分析的方式来识别人工智能对长期经济增长的影响,因此,本文基于理论层面,进一步探讨了人工智能对长期经济增长以及未来南北差距产生影响的作用机理。研究发现:第一,人工智能技术创新能够显著促进经济增长,长期经济增长甚至存在指数级增长的可能。人工智能作为新一轮技术进步最显著的技术创新,与传统技术创新相似,能够为区域乃至国家经济增长提供动力源泉,显著推动宏观经济增长。但与传统技术创新不同的是,人工智能能够通过实现自动化知识生产,为经济提供更强的增长效应,长期而言,如果智能自动化技术进步与新任务边界延展规模一致,经济将实现指数级增长。但不容忽视,人工智能与经济社会渗透融合并非一蹴而就,而是会经历导入阶段、拓展阶段和成熟阶段等阶段的积累和调整过程。因此,人工智能并非一开始就能对经济增长产生促进作用,在人工智能的导入阶段,将对经济增长产生负向效应。人工智能具有“当代与未来贯通的长期性”,经过导入阶段的积累和调整过程,对经济增长的促进作用才得以显现,长期而言,经济存在指数级增长的可能,但同时伴随着南北差距的扩大。自主创新成为缩小未来南北差距的关键,而提升欠发达国家的技术引进效率仅能够缓解南北差距扩大的趋势。第二,人工智能的发展伴随而来的是劳动力从机械化、知识创造性低的工作和既定程序的开放型脑力劳动中解放出来,而新工作岗位对劳动力的素质和技能要求不断提升,带来高技能劳动力需求扩大和实际工资水平提高,进而对经济高质量增长产生推动作用。劳动是人工智能技术创新促进经济增长的重要渠道之一,劳动渠道主要通过劳动就业路径和劳动收入路径促进经济增长。从劳动就业路径而言,人工智能能够将劳动力从繁琐的工作中解放出来,与此同时,创造新的就业需求,拉动劳动力就业,推动经济增长;从劳动收入路径而言,人工智能能够带来更高的劳动收入水平,对经济增长表现出显著的正向效应。目前,人工智能发展的同时,工作任务标准化、劳动力素质和技能提升以及智能渗透引致就业均能缩小技能收入差距,技能收入差距并未呈扩大趋势,将对经济增长产生正向效应,但不容忽视的是,目前人工智能与经济社会渗透融合尚处于拓展初期,边界延展对技能收入差距的扩大效应并未得到完全释放,未来仍然存在技能收入差距扩大的潜在风险。另外,人工智能在与经济社会渗透过程中同样潜伏着风险和挑战,尤其是在人工智能的导入阶段,会带来智能机器挤出劳动就业,降低劳动收入水平,并加剧收入不平等,进而抑制经济增长。只有经过导入阶段的调整和技术积累,人工智能的经济增长效应才能真正发挥作用。第三,人工智能在经济社会的快速渗透将吸引更多的资本积累,增加资本投资,提升资本的生产效率,对宏观经济增长产生支撑作用。资本是人工智能技术创新促进经济增长的又一渠道,而这一渠道主要通过资本积累路径和资本结构路径发挥作用。就资本积累路径来看,在人工智能的导入阶段,人工智能资本增加的同时挤出传统资本,由于增加的人工智能资本难以弥补挤出的传统资本,进而资本积累下降,抑制经济增长,但经过导入阶段的调整和技术积累,人工智能能够吸引更多的资本投资,增加资本积累,且增长幅度大于下降幅度,进而资本积累总体呈上升趋势。中国作为最大的发展中国家,资本积累尚存在较大空间,通过增加资本积累能够促进经济增长。就资本结构路径来看,受行业工作任务特征的影响,人工智能的渗透难度存在行业差异。由于产品生产部门智能渗透相对容易,将吸引大量人工智能资本和部分传统资本流入,而服务部门智能渗透难度大,该部门新增的高技能岗位将吸引大量传统资本流入。在两种资本的流动过程中,无论是产品生产部门大量采用人工智能资本替代劳动力,还是服务部门部分采用人工智能资本替代劳动力,传统资本与高技能劳动力相结合进行生产,都将提升资本的生产效率,促进经济增长。第四,人工智能的发展能够突破“索洛悖论”的怪圈,显著提升技术效率,最终体现为全要素生产率的增长,为经济增长提供力量源泉。生产效率是除劳动和资本外人工智能技术创新促进经济增长的又一渠道,而这一渠道包括技术进步路径和技术效率路径。但实证发现,生产率渠道主要通过技术效率路径发挥作用,技术进步路径的作用并不显著。具体而言,现阶段,人工智能技术创新对促进技术传播和扩散、科学发现与发明以及技术革新和改进等的作用并不显著,难以通过技术进步路径实现经济增长。但能够提升其他生产要素间衔接配合的契合度,补充或增强传统生产要素,带来微观主体的管理方式、社会管理方式以及经济社会组织运行的模式不断改革,改善要素质量与配置效率,进而驱动经济增长。然而,人工智能并非一开始就能提升全要素生产率,同样需要调整和技术积累的过程。人工智能在导入阶段,由于“索洛悖论”的存在,对经济增长的促进作用并不明显,但随着人工智能在行业应用的逐渐成熟,“索洛悖论”将消失,全要素生产率显著提升,且提升幅度大于前期的下降幅度,进而实现经济增长。最后对论文的研究结论进行总结,并就中国人工智能发展提出了政策建议。另外,本文可能的创新之处主要体现在以下三个方面:第一,多角度、综合系统地分析了人工智能影响经济增长的三条渠道,补充和拓展了人工智能与经济增长的相关研究。围绕人工智能与经济增长的已有研究往往直接指出人工智能对经济增长的影响方向,而缺乏作用机理分析,或者从某一方面研究人工智能对经济增长的影响,缺乏多视角、综合系统的研究。本文基于人工智能影响经济增长的典型事实,从劳动、资本和生产率等多角度出发,综合系统地分析了人工智能影响经济增长的作用渠道,在一定程度上补充和拓展了已有的相关研究:(1)劳动渠道。人工智能的发展伴随着劳动力从机械化、知识创造性低的工作和既定程序的开放型脑力劳动中解放出来,创造的新就业岗位带来高技能劳动力需求扩大和实际工资水平提高,推动经济高质量增长,与此同时,人工智能也将带来技能溢价,加剧收入不平等,进而抑制经济增长。(2)资本渠道。人工智能能够增加资本积累,带来人工智能资本和传统资本在行业流动,提升资本的生产效率,推动经济增长。(3)生产率渠道。人工智能在行业的应用过程中能够提升其他生产要素间衔接配合的契合度,补充或增强传统生产要素,带来微观主体的管理方式、社会管理方式以及经济社会组织运行模式不断改革,改善要素质量与配置效率,进而驱动经济增长。第二,考虑了人工智能对经济社会产生影响的阶段差异,从理论上科学、全面地认识了人工智能在渗透融合的不同阶段对经济社会的风险与机遇。人工智能向经济社会渗透融合并非一蹴而就,而是会经历从导入到不断成熟的过程,因此,其对经济社会的作用效应也将存在阶段差异。Hémous&Olsen(2015)、王君等(2017)等研究注意到了人工智能对劳动就业和收入差距产生影响的阶段差异,但在人工智能的其他相关研究中并未受到重视。因此,围绕人工智能与经济增长的已有研究均未考虑人工智能产生影响的阶段差异,进而忽略了人工智能对经济社会产生影响的调整过程,而调整过程往往伴随着风险与挑战。因此,缺乏这一考虑,可能导致研究结论出现偏差。本文将人工智能产生影响的阶段差异引入分析过程,分析了人工智能在与经济社会渗透融合的不同阶段通过作用于劳动、资本和生产率对经济增长的作用效应,明确了人工智能风险和机遇的阶段存在性。在一定程度上,这是对既有人工智能与经济增长相关研究的一个重要补充。第三,从行业层面出发,探索出了一种衡量人工智能发展水平的方法,弥补了目前人工智能相关研究在数据选择上的不足。受相关数据可得性的限制,国内围绕人工智能的实证研究较少,已有的实证研究主要采用工业或制造业机器人数据进行研究,并不能全面反映人工智能在整个国民经济行业的渗透情况,得到的结论存在片面性。本文采用人工智能相关专利申请量作为衡量人工智能发展水平的代理变量。基于本文对人工智能的界定,分别以“人工智能”“算法”“专家系统”“机器人”为关键词,在Patenthub专利汇全球专利数据库搜索专利数据,将重复的数据进行剔除,并将得到的人工智能专利数据根据三个层次分入我国国民经济各行业。第一个层次:按国际专利分类(IPC)主分类号归类;第二个层次:难以按IPC号分类的专利数据按照《国际专利分类与国民经济行业分类参照关系表》归类;第三个层次:剩余的专利数据按用途划分。最后形成2003-2018年19个行业人工智能专利绝对量的面板数据。这一数据清晰地反映了人工智能在不同行业的渗透情况,以及对不同行业产生的影响效应。基于此,实证检验了人工智能的经济效应,克服了人工智能与经济增长相关研究在人工智能代理变量选取上的不足。