论文部分内容阅读
激光与介质相互作用会诱导出许多量子相干效应,将引起光的色散、吸收和非线性等方面的特性显著改变。因此量子相干在非线性光学、激光物理、量子光学等研究方向产生重要的影响。光学双稳近年来由于在光学晶体管、光电转换、存储元件、全光开关和逻辑电路方面的潜在广泛应用引起了众多研究者的关注。本论文在光与物质相互作用的半经典理论背景下,基于电磁感应透明原理从理论上研究了四能级N型金刚石锗空位色心方案中的光学双稳和光学多稳特性。论文内容主要分为以下几个部分进行:第一部分:首先介绍了光学双稳的研究背景及现状。随后对锗空位色心系统光学性能方面的研究进展进行了详细介绍。锗空位色心优异的光学性能和单光子水平的非线性等特性,将有助于锗空位色心中光学双稳的实现。第二部分:介绍了光与物质相互作用的理论基础。其中对论文研究过程中所用到的物理方法和物理原理进行了详细介绍,包括旋转波近似、慢变包络近似、几率幅方法、密度矩阵方法、光在原子介质中的传播理论和电磁感应透明原理。第三部分:首先介绍了光学双稳产生的基本原理及其分类,其次对于量子相干诱导光学双稳态机制也做了详细讨论。最后主要阐述了我们的研究工作:金刚石锗空位色心中由量子相干调控的光学双稳和光学多稳特性。第四部分:对论文研究的内容进行总结,并展望了在锗空位色心中实现的光学双稳和光学多稳在以后科学领域理论和应用方面的前景。本文的研究成果主要为:在金刚石锗空位色心中由量子相干所产生的光学双稳行为对探测场和耦合场的失谐量、场强度以及锗空位色心的粒子数密度等参数非常敏感,可以通过改变这些参数来控制光学双稳的阈值。此外,我们研究发现通过调节控制场的强度和锗空位色心的粒子数密度可将光学双稳转换为光学多稳,并对其阈值进行调控。本文的创新点:锗空位色心的光学性能相比于以往的其他金刚石空位色心更具有优势,所以锗空位色心中研究光学双稳和多稳特性的工作具有很大意义。我们的研究结果与以往的N型原子系统中的光学双稳研究方案结果不完全一致,对于实现光学双稳和多稳及其调控的实验条件给出了详细的精确数据方案。并且对锗空位色心的粒子数密度与光学双稳和多稳的调控进行了相关的讨论。这为研究者实现光学双稳相对应用时,选取更优异的非线性材料提供了一定的理论指导。