【摘 要】
:
为让机器人在工作环境中自主地移动,定位和绘制环境地图这两项基础功能便是不可或缺的。经多年发展,基于视觉的同时定位和制图(Visual Simultaneous Localization and Mapping,VSLAM)已经有比较成熟的框架,且能为机器人提供基本的环境感知能力。SLAM(Simultaneous Localization and Mapping,SLAM)系统框架的前端是整个框架
论文部分内容阅读
为让机器人在工作环境中自主地移动,定位和绘制环境地图这两项基础功能便是不可或缺的。经多年发展,基于视觉的同时定位和制图(Visual Simultaneous Localization and Mapping,VSLAM)已经有比较成熟的框架,且能为机器人提供基本的环境感知能力。SLAM(Simultaneous Localization and Mapping,SLAM)系统框架的前端是整个框架的数据入口,其主要部分是视觉里程计,主要负责对机器人位姿和空间点进行实时的估计,所以视觉里程计的鲁棒性将影响整个系统的稳定性,故本文对视觉里程计中的特征提取和匹配过程进行了研究。此外,当面对相对较大范围的复杂外界环境时,受机器人硬件及算法性能的限制,现有SLAM算法针对大范围环境地图的绘制和管理仍需改进。并且为了实时运行,当前多数SLAM算法绘制的都是稀疏特征点地图,仅能用于基本定位,不支持导航、路径规划或场景重构等高级功能。针对以上这些问题,本文从下面的几个点入手研究和改进视觉SLAM系统:(1)本文首先介绍基于特征点的图优化SLAM的发展历程及图优化视觉SLAM系统的经典框架,分别对框架中的前端视觉里程计、回环检测、基于优化的后端、基于特征点的地图绘制及基于点云的3D稠密重建等模块进行了介绍。(2)其次,介绍本文在ORB算法基础上改进的基于图像中特征点分布的相邻帧帧间特征匹配方法。对当前主流的一些特征检测算法进行了分析,通过实验对比,展示了ORB(Oriented FAST and Rotated BRIEF,ORB)算法的优势。但原始的ORB特征提取算法在提取单帧图像中的ORB特征时,只会对该图像中的每个单独的ORB特征点进行提取和描述,没有利用ORB特征在图像中的分布信息。而在进行帧间匹配时,对于具有相似描述子的两个特征点,容易造成误匹配。因此,对原始ORB算法进行改进,加入ORB特征点在图像中的分布位置作为辅助信息,以提高特征匹配的效率和准确率,进而提升视觉里程计的效率和准确率。(3)然后,在深入研究基于图优化的开源算法ORBSLAM2(Oriented fast and Rotated Brief SLAM2,ORBSLAM2)的基础上,进一步将重点放在较大范围场景下的地图保存和更新上,对较大范围场景下的地图保存过程进行了说明。同时,针对绘制地图时,地图中出现的动态变化部分,讨论了如何将变化后的地图局部更新到地图中。(4)最后,利用现有机器人硬件平台,结合开源机器人操作系统ROS(Robot Operating System,ROS)在ORBSLAM2算法框架的基础上设计并实现了整个视觉SLAM系统。系统具备对环境的实时3D点云稠密重建、环境地图保存和动态部分更新、地图重加载及重定位的能力。通过实际的场地测试,验证了系统在不同场景下的实际性能。最终结果表明,本文设计的SLAM系统可以实现对较大范围场景地图的绘制、更新和保存,也可以重加载已保存的地图并在该地图上实现重定位功能。
其他文献
机器问答技术是自然语言处理技术中发展最迅速也是最重要的技术之一,机器问答技术可以帮助人们从高速发展的互联网和信息技术产生的巨量文本信息中快速便捷地获取问题的答案。本文主要对长篇幅上下文多跳问答技术进行了多方面的研究,提出了基于支持句推理和精准问答的两阶段长上下文多跳问答框架和多种深度学习模型,来帮助用户快速地从长篇幅的文本信息中得到问题的答案。本文的主要工作如下:1.本文提出了基于支持句推理和精准
外骨骼作为综合性的科技产物,在军事、医疗、娱乐等领域应用前景广阔。外骨骼由于其自身结构的特殊性,精确的动力学模型无法直接获得,因此研究外骨骼动力学模型辨识和人机交互控制有着十分重要的意义。本文以实验室自主设计的二自由度下肢外骨骼为研究对象,首先针对传统无模型控制的局限性,给出外骨骼拉格朗日(Lagrange)动力学模型的建立过程以及利用智能群优化算法对动力学模型中的未知参数辨识进行辨识的过程。然后
目前下肢助力服可以包括柔性助力服与刚性助力服,下肢刚性助力服多为刚性连杆构成,存在结构复杂、重量大、运行功耗大等众多缺点。下肢柔性助力服以柔性材料驱动实现助力,拥有穿戴方便,重量轻等众多优点。因此,研究下肢柔性助力服的控制策略对各个关节实现高效助力有着重要研究意义。本论文对下肢柔性助力服的控制策略进行研究,主要研究机主人辅运动下的控制策略、人主机辅随动控制下的控制策略以及随动控制参数优化。建立下肢
由于人民生活水平的逐步提高,对于吃穿住行的选择也变得以舒适、便捷为首要条件,在“行”这一方面,私家车逐渐成为大众出行的交通工具,在国庆等节假日交通流量更是成倍的增长,交通事故的发生也是呈增长的趋势。分析其原因,驾驶员在疲劳和酒后驾驶造成的事故占比最高,其中酒驾行为可以通过酒精含量探测器去管控,而疲劳驾驶更多的是依靠驾驶员自身去管控。因此,设计一款疲劳驾驶检测系统在实际生活中显得尤为重要。本文在完成
在依靠实时着色方式来着色三维场景从而得到着色效果的应用领域中,例如游戏、工业仿真以及建筑设计等领域,通常需要着色效果逼真的图像为用户提供身临其境的感觉。实时着色可采用的光照模型有很多,例如Lambert光照模型、Phong光照模型以及PBR光照模型等。为了使实时着色的效果更加逼真,在实时着色时一般采用PBR光照模型来对三维场景着色,PBR光照模型会对三维场景中模型的材质预先设定,这样在光照计算时会
作为计算机视觉领域内的主要研究方向之一,目标检测的核心目的是对每张输入图像的待检测目标进行分类和定位。自2011年以来,在深度学习的辅助下,目标检测任务在医学影像、军事运用、信息挖掘等领域取得了诸多成果。然而基于卷积神经网络的目标检测技术依旧存在诸多问题。首先现阶段常见的轻量化方法忽略了特征集合自身的特点;其次,不同尺寸的目标的检测精度参差不一,检测效果处于劣势的小目标对整体精度的测算带来很多负面
当前,人们对于对流初生短临预报的需求日益增长,随着深度学习技术的不断深入发展也使得利用深度学习方法进行对流初生短临预报成为了可能。虽然我国近几年在灾害性天气中的预报取得了长足的进展,但传统的数值天气预报方法在对流初生短临预报上仍面临较大的挑战。在本论文中,针对对流初生短临预报问题,我们尝试使用深度学习的方法提升预报模型的时效性和准确性。本论文依托中国电子科技集团公司第十四研究所所控横向项目开展工作
随着经济的增长,中国的汽车总数逐年增加,这大大增加了交通事故和交通堵塞的可能性。无人驾驶作为一种新的研究领域,期望能优化由汽车带来的一系列交通问题。无人驾驶的研究是复杂且长期的,它包含了多个方面的研究,信息采集就是其中的一个。信息采集包含了对道路中各种关键信息的检测,包括车道线、红绿灯、交通标志等。本论文以无人驾驶领域中的交通标志检测为研究课题,重点研究了基于YOLO v3改进算法的交通标志检测、
人体语义分割是一种精细的语义分割任务,其目的是在像素级尺度上识别人类图像的组成部分(如身体部位和衣服)。理解人类图像的内容,对电子商务、人机交互、图像编辑和虚拟现实等一些潜在的应用很有应用价值。目前,随着基于语义分割的全卷积神经网络的发展,人体语义分割取得了重大进展。人体语义分割与一般的图像分割相比,其难点主要有以下几个方面:首先,人体语义分割在实例场景下的数据比较复杂,涉及到多种场景,例如多人或
随着通信技术的发展,辐射源个体识别在很多领域具有广泛应用,例如电子信息对抗、频谱管理、生命科学和故障诊断等领域。然而现在的辐射源个体往往具备多种调制方式、中心频率、传输速率等特点,这将给辐射源识别带来极大挑战。在辐射源个体之间无明显差异的场景下,基于传统机器学习的辐射源个体识别算法准确率往往不够理想,而且其复杂度比较高、识别时间长,导致其很难满足现代的实际工程需要。为了解决以上问题,本文主要采用基