官能化SEBS增韧尼6/蒙脱土纳米复合材料的制备与性能研究

来源 :华东理工大学 | 被引量 : 8次 | 上传用户:muyue3122
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对尼龙6(PA6)具有缺口冲击敏感性和低温及干态下冲击强度低等缺点,本论文对其进行增韧改性研究。选用了热塑性弹性体苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS),并将其分别与甲基丙烯酸缩水甘油酯(GMA)和马来酸酐(MAH)进行接枝,得到2种官能化接枝物SEBS-g-GMA和SEBS-g-MAH。然后,用官能化SEBS.以及官能化SEBS与聚碳酸酯(PC)协同对PA6进行增韧,同时以纳米有机蒙脱土(OMMT)为填料对PA6进行补强, GMA或环氧树脂(EP)为相容剂,制备了综合性能优异的高韧性工程塑料。采用XRD、SEM、TGA、DSC、FTIR、Molau实验、力学性能测试以及流变性能测试等多种测试手段,研究了官能化基团种类及接枝率、填料和相容剂的用量、以及各组分间的微交联反应体系对纳米复合材料形态、结构和性能的影响。首先将PA6与国内工业化生产的OMMT进行熔融共混,制备了PA6/OMMT纳米复合材料。通过力学性能测试发现,当OMMT含量为4wt%时,复合材料具有较高的强度和弯曲模量,但冲击强度较纯PA6有所降低。对复合材料进行小角X射线衍射扫描以及透射电镜观察,发现OMMT已经被PA6剥离,较均匀地分散在基体中。Molau实验结果表明OMMT以胶体形式均匀地分散在甲酸溶液中,不沉降、不分相。分别以GMA和MAH为功能单体,熔融挤出制备了官能化弹性体SEBS-g-GMA和SEBS-g-MAH,用滴定分析测定了两种接枝物的接枝率,分别为2.39%和1.2%。再分别以SEBS-g-GMA和SEBS-MAH为增韧剂、OMMT为填料,制备了尼龙6/弹性体/蒙脱土三元纳米复合材料。研究了三元纳米复合材料的力学性能、结晶性能和热稳定性以及分散相在基体中的分散状态。结果表明,三元纳米复合材料的性能介于尼龙6、尼龙6/弹性体之间,弹性体使得PA6/OMMT纳米复合材料的冲击强度提高。当弹性体含量达到约30%时,三元纳米复合材料发生脆-韧转变,在进行缺口冲击强度测试时试样已经不能完全断裂,冲击韧性大幅提高。同时复合材料的强度仍保持在纯PA6的90%以上,材料的硬度与韧性达到较好地平衡。将SEBS-g-GMA和SEBS-g-MAH对PA6复合材料的增韧效果作比较后发现,不同的接枝物导致了分散相在基体中有不同的分散状态。在组成、加工条件相同情况下,共混体系中SEBS-g-GMA的粒径远大于SEBS-g-MAH的粒径,其增韧的效果要差。少量的OMMT使得分散相粒子尺寸减小;较多量的OMMT能阻碍弹性体与PA6基体间的界面黏结,导致粒子尺寸增大,降低了材料的冲击性能。用SEBS-g-GMA增韧制备的PA6/SEBS-g-GMA及PA6/S EBS-g-GMA/OMMT复合材料,均不能溶解于甲酸中,试样颗粒悬浮在甲酸溶液的最上方;而SEBS-g-MAH增韧制备的PA6/SEBS-g-MAH及PA6/SEBS-g-MAH/OMMT复合材料可溶于甲酸,显示的为一牛奶状的悬浮物。用3种不同接枝率的SEBS-g-MAH增韧制备的PA6/SEBS-g-MAH/OMMT复合材料中,随着MAH接枝率的增大,分散相的粒径减小,但复合材料的冲击强度基本保持不变、与MAH的接枝率大小无关.SEBS一g-GMA和SEBS-g-MAH均降低了PA6的熔融温度并且对PA6的结晶有阻碍作用。通过两步共混加工,即先将PA6与OMMT共混后,再将挤出物与SEBS-g-MAH共混制备的三元纳米复合材料具有优异力学性能,其冲击强度比用一步加工法(即,共混组分混合后同时加入到挤出机中进行挤出)制备的复合材料的冲击强度高122%。一步共混加工时,另加入少量GMA或EP作为相容剂,所制备的纳米复合材料与两步加工制备的具有相近的力学性能,并且极大地提高了材料的断裂仲长率,得到一种高韧性的工程塑料。相容剂的加入,使得共混体系间产生了微交联反应,共混物不能完全溶解于甲酸溶液中,复合材料体系的黏度增大,提高了材料的储能模量和损耗模量。采用弹性体SEBS-g-MAH与PC复合增韧PA6,极大地提高了材料的冲击强度;同时用EP改善PC与基体PA6间的相容性,经反应挤出制备了高韧性的新型PA6工程塑料,当EP含量为1wt%时,冲击强度达到55.61kJ/m2,断裂伸长率达到306.4%,比纯PA的分别提高了313.2%和625.2%。这种新型增韧合金具有非常出色的机械性能,蒙脱土的引入进一步提高了复合材料的拉伸和弯曲性能。随着EP用量的增加,PA6与PC的相界面变的更加模糊,复合物的拉伸强度、弯曲强度及模量逐渐增大,冲击强度先增大后略下降。PC的加入有助于提高PA6/SEBS-g-MAH共混物的耐热性,相容剂EP使得体系中各相之间的界面黏结作用增强,进一步提高了材料的热分解温度。
其他文献
近年来,由于经济的发展、土地资源的稀缺,建筑物之间的采光权纠纷已成为社会矛盾的焦点之一,且多以群体诉讼的方式出现,给人民法院审判工作带来了挑战。由于法律对于采光权问
近年大荔县设施蔬菜产业发展迅速,栽培面积约1.07万hm2,以黄瓜、番茄等为主,经济效益可观,极大地改善了人们的生活水平,显著地提高了土地产出率,增加了农民的收入,彰显了社会
本文介绍了"翻转课堂"的背景知识,针对大学英语教学的现状,提出在大学英语教学中实施"翻转课堂"的教学模式以提高学生的英语应用能力;最后,指出在该模式中英语教学所面临的挑
高温超导体(HTSC)自从被发现以来,其优异的性能和潜在的应用前景就一直受到科学界的广泛关注。由于结构上存在强烈各向异性,而且内部钉扎中心的存在也对超导性能有关键的影响
在过去的几十年里,三元氧化物微纳米材料由于其独特的性质和潜在的应用,引起了人们的广泛关注。最近,通过液相化学方法构筑复杂的多维、多级无机微纳米结构已经成为纳米科技
贵金属纳米材料(如金,银和铂等纳米颗粒)是纳米材料的一个重要组成部分。贵金属纳米材料具有较大的比表面积,较高的表面能和表面晶体缺陷等特点。这些特点使它们不但具有更好的
逻辑是一门工具性的学科,它对日常思维尤其是语言的沟通交流方面具有指导作用,而语文教学是指导语言交流和沟通的重要环节,因此在语文教学过程中,逻辑学的地位非同小可。本文
金融是现代经济的核心,金融主要是在储蓄与投资之间建立一座桥梁,自其作用是实现资金在不同部门之间的合理配置:对资金短缺部门进行补给,对盈余部门进行引流。如此一来可以维
近年来,一维磁性纳米材料如纳米管、纳米带、纳米线和纳米纤维等因其新奇的物理和化学性质以及在基础研究和应用技术方面的重要价值而受到人们的广泛关注。它们不但具有普通
目的筛选油橄榄叶抗糖尿病活性部位。方法应用回流提取法和大孔吸附树脂技术,从油橄榄叶中提取6个部位(A~F)。对6个部位进行α-淀粉酶抑制实验、蛋白质非酶糖基化抑制实验和四