论文部分内容阅读
生物特征识别技术由于信息时代的到来蓬勃发展,已经在个人身份认证领域取得一定的研究、应用成果。指纹识别技术凭借其易采集、识别稳定以及成本低等特点,成为生物特征识别技术行业中占比最高的身份认证技术。由于人口基数庞大,指纹识别技术的研究逐步转向基于大容量指纹库的指纹自动识别,为了对待识别指纹找到与之相匹配的指纹模板,指纹库需要建立有效的索引,否则将会在数据库进行全表扫描,时间代价较大,不满足人们对高效系统的要求。因此,本文以指纹识别系统中的分类方法为主要研究方向,研究并实现指纹三级分类算法与基于分类特征的指纹识别系统,将整个指纹库缩小为与待识别指纹相似的同源指纹集。本文的主要研究成果如下:(1)在指纹图像预处理阶段,研究并实现了一套指纹质量评估方法,剔除低质量指纹并提示用户重新采集,评估方法采用了图像有效面积比、有效区灰度对比度以及有效区形心偏移量等特征。(2)在指纹分类方面,一方面研究了指纹三级分类方法,首先根据提取的奇异点的数量与位置确定指纹纹形,对指纹进行粗分类,其次根据奇异点间脊线数目进行二级分类,最后依据脊线平均周期分类,依此三种特征数据构建带有索引的大容量指纹数据库;另一方面针对奇异点间脊线数目与脊线平均周期估算不准确的情况,研究实现了数据库索引方法,在同源指纹集匹配失败时,增加搜索半径,经过大量实验得出搜索半径上限,降低系统搜索时间与拒识率。基于现有的算法结合以上两方面的研究内容,实现一套面向研究生招生考试的基于分类特征的指纹自动识别系统,经过实验数据验证表明,质量评估方法和分类算法能降低系统拒识率,提高系统的效率。