基于遗传算法的人脸识别系统的设计与DSP实现

来源 :东北大学 | 被引量 : 1次 | 上传用户:panxuanyu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
人脸识别技术是最近几十年生物特征识别领域的研究热点,它融合了计算机图形学、数字图像处理、计算机视觉、模式识别和人工神经网络等多个学科的方法和理论。人脸识别技术在公共安全和军事安全领域有着十分广阔的应用前景。本文在查阅相关文献和对人脸识别系统深入研究的基础上,利用北京瑞泰创新公司的ICETEK-DM6437-B-KIT作为硬件开发平台,设计实现了基于遗传算法的人脸识别系统。系统包括对视频图像的光照补偿、特征提取、特征选择、分类识别等功能,并能将识别结果显示。本文主要完成的工作如下:(1)图像光照补偿。在实时视频采集系统中,光照强度对系统性能影响很大。本文通过实验对比分析了三种光照补偿算法,最后确定本文采用的光照补偿方法。(2)人脸检测与定位。本文在YCbCr颜色空间采用肤色检测方法对人脸肤色进行聚类分析,完成了人脸区域的检测,并通过人脸形状特征参数来排除脖子等非人脸区域。(3)人脸特征提取与选择。本文采用8×8分块LBP(Local Binary Patterns)算子提取人脸纹理特征,共提取出640维特征向量。采用遗传算法进行特征选择,并根据基本遗传算法的理论知识,提出了一种改进的遗传算法,主要改变了适应度函数、选择算子、交叉概率和变异概率等参数。实验结果表明,本文提出的改进遗传算法在全局收敛性、迭代时间和识别率上都优于基本遗传算法。(4)人脸分类识别。本文采用最近邻分类器和支持向量机(Support Vector Machine,SVM)分类器相结合的方法进行人脸分类识别。在处理前端用最近邻分类器进行粗分类,得到与测试样本距离最小的两类,再对这两类用SVM进行细分类。(5)在ICETEK-DM6437-B-KIT硬件平台上实现了系统的功能。通过在CCS(Code Composer Studio)中采用C语言编程,实现了视频人脸识别功能。通过测试,本文所设计的人脸识别系统识别率达到90%以上,具有较好稳定性和很强的实用性,为进一步研究人脸识别系统打下了很好的基础。
其他文献
脑电图(electroencephalogram,EEG)是脑神经细胞的电生理活动在大脑皮层或头皮表面表现出的电现象。一般来说,脑电变化可分为两类:即诱发电位响应和自发电活动。研究表明,脑
近些年来,伴随着数字技术和网络化的发展,数字产品的侵权、盗版现象越来越严重,数字水印技术作为解决这一问题的有效的手段得到了广泛的关注。数字水印技术就是在数字声音、