【摘 要】
:
随着现代电子封装技术的快速发展,总体是沿着更高的集成、更高的性能以及更高的兼容性、更高的可靠性和更多的功能的方向发展。近年来,随着用户需求的进一步增多,系统集成度的进一步增大,晶体管的最小特征尺寸缩小的速度变得越来越慢,这使得对集成电路的发展提出了更高的挑战。而三维集成技术中的硅通孔(Through Silicon Via,TSV)技术能够减小结构中信号连线的长度;增加传输的宽带;缩小器件体积,提
论文部分内容阅读
随着现代电子封装技术的快速发展,总体是沿着更高的集成、更高的性能以及更高的兼容性、更高的可靠性和更多的功能的方向发展。近年来,随着用户需求的进一步增多,系统集成度的进一步增大,晶体管的最小特征尺寸缩小的速度变得越来越慢,这使得对集成电路的发展提出了更高的挑战。而三维集成技术中的硅通孔(Through Silicon Via,TSV)技术能够减小结构中信号连线的长度;增加传输的宽带;缩小器件体积,提高集成度;实现异质器件的集成,所以工业界和学术界普遍认为:TSV可以实现高密度的集成封装,并可以作为延续摩尔定律的一种方式。在TSV转接板的制作过程中,常会受限于工艺,在制作大深宽比的TSV通孔时,除了工艺成本的增加,还易填不实,从而影响转接板的微波传输性能。本文通过在研究垂直互连和晶圆键合的基础上,分析过渡结构的微波特性和键合机理,最终设计一个垂直互连结构来解决微系统三维集成时,层间信号互连的低损耗传输的问题。本文设计并制备了一个基于TSV转接板和Cu/Sn键合的垂直互连结构。首先,本文研究了传输线理论和垂直过孔的结构,分析过孔等效电路和影响TSV传输性能的因数,最终用两个TSV准同轴的结构在两层高阻硅上做垂直互连,并用HFSS对TSV准同轴结构,垂直互连结构以及是否有芯片埋置的垂直互连结构进行了建模和仿真。其次,考虑到直接制作高深宽比的TSV通孔的难度较大,并存在填不实的风险,所以根据实际工艺条件的限制,本文选择制备2块深宽比为5:1的TSV转接板,通过Cu/Sn键合的方式使其成为一块整体。本文针对TSV通孔工艺,共面波导和焊盘的制作工艺和Cu/Sn键合的工艺,其中部分工艺步骤细节对比了其他方案,最终设计了一套完整的流程制得了该转接板。将制备好的样品封装在LTCC基板上并测试了其连通性和性能,得出在1-40GHz频段下,输入输出驻波小于1.2。最后为了验证可集成性,设计了一个四通道的发射模块。加工出实物,对其进行测试和分析,在工作频率范围内,通道的发射增益符合预期。测试结果验证了设计的垂直互连结构的微波传输性能良好,可以集成于微波集成电路的模块中。
其他文献
多尺度问题和有界面的问题有很多重要的物理应用,吸引了很多数学家和物理学家。一种有效的计算多尺度问题的方法是设计渐近保持的数值格式。对于含有小参数的偏微分方程,所谓一个算法是渐近保持的指的是,当相应的数值离散在小参数趋于零的时候,仍然是渐近极限的合理数值离散。具有这个性质的算法好处在于对所有参数区间都适用,可以处理不同的尺度的参数同时存在的问题,而且在计算时不需要推导在其他很多多尺度算法中需要用到的
随着近些年集成电路的发展,电子封装在器件小型化、功能化、集成化制造的应用变得不可或缺。虽然目前已经有倒装芯片,晶圆级封装等很多先进的连接形式,但引线键合技术经过多年发展,成本更低、工艺更可靠,成为主流的器件芯片连接形式。金丝以其稳定的化学性能、良好的延展性和优良的可焊性,在高端电子产品的引线键合中所占比例最高。随着系统工作频率的提高到GHz时,金丝键合线不再是简单的传输线,而以多种方式表现出射频特
在植物生长过程中,植物的呼吸作用、光合作用、水分输送等多种生命活动都离不开水的参与,叶片水分含量分布是衡量植物生理生化的重要指标。评估植物叶片水分,一方面有助于对植物水分亏缺程度进行快速判断,保障植物水分实现精准灌溉,提高农业水资源利用率,从而推动农业生产可持续发展;另一方面可以加深理解植物在正常和胁迫环境下对环境的变化响应,可视化植物叶片动态、时间和空间异质特性,用于解剖不同叶片区域和组织的代谢
太赫兹辐射源的研究一直是太赫兹科学发展的关键技术,真空电子器件是重要的太赫兹辐射源之一。随着频率的增加,高阶模工作是高频真空电子器件克服频率限制的一种有效方法。模型竞争是目前高阶模工作需要解决的关键问题。电子注从中间穿过亚波长孔阵列结构,可以产生窄带增强的Smith-Purcell辐射。基于这种辐射特点提出了克服高阶模工作中模式竞争的新思路,并设计了工作电路。下面为主要的工作内容:论文首先基于电子
高效快速的波束调控方案是实现高速太赫兹无线通信系统的关键技术问题。本论文提出的太赫兹复合功能序构波束调控超表面,是一种实现平面化、数字化、多样化和快速式新型扫描机制的有效新途径。开展高性能太赫兹极化调控机理研究与器件研制,可以为太赫兹技术的发展提供技术支撑。本文首先从电磁波的极化状态开始分析,通过将超表面(Matesurfaces)应用在极化调控器件中,突破了传统电磁波极化调控器件的限制,具有高极
螺旋线行波管不仅能提供大功率输出,且工作频带较宽,增益较大,在现代军事及通信装备中,应用较为广泛。展宽带宽和增大输出功率是螺旋线行波管发展的方向。本文就6-18GHz大功率螺旋线行波管展开研究,旨在二倍频程范围内实现大功率输出。为了展宽带宽,设计了一种夹持杆中加载金属块的螺旋线慢波结构,研究其高频特性,确定整管模型,并对注-波互作用进行分析。除此之外,设计了相对应的输入输出结构和周期永磁聚焦系统。
近年来,低温或冷等离子体作为等离子体方向的热门研究被大多数人关注。根据其放电特性分类,这些等离子体大多是通过介质阻挡放电方式激发的,由于这类等离子体功率较低,因此只能被用于伤口消杀和基本治疗。本文主要研究的是设计一种可以达到外科手术要求的精准切割、快速凝血、微缩创面以及操作安全的等离子体粒子束切割装置,因此本文设计并加工了一种具有低电压、大电流特性的非热电弧等离子体装置,以达到比普通电手术操作更为
典型微波接收机前端配置由接收天线、滤波器、限幅器、低噪放和混频器构成,其中,低噪放和混频器属敏感器件,对外界强电磁波较为敏感,容易受到高功率微波(HPM)前门攻击。传统保护技术主要有滤波和限幅两种方式,布局为串行拓扑,功能上相互独立,难以实现在一个器件中完成时域、频域上兼容性HPM电磁环境防护功能。因此本论文提出,在HPM电磁环境下利用波导带通滤波器中天然谐振结构实现强场瞬态自击穿效应机制,实现微
太赫兹技术广泛应用于卫星通信、雷达探测和物体监测成像等研究领域,关乎国计民生,具有重要的科研应用价值。太赫兹技术的不断应用和发展,对移相器的性能有了更高的要求。液晶作为高性能各向异性材料,适合应用于相位连续可调的太赫兹移相器。本文针对基于液晶材料的亚太赫兹移相器的设计、仿真与加工测试展开研究。首先展开基于液晶材料的反射式移相器研究。在设计分析单偶极子液晶移相单元的研究方法基础上,总结了反射式液晶移
无线电磁波穿越地球大气层时,受到电离层不规则体的影响,其幅度和相位会在短时间内发生快速抖动,被称为电离层闪烁。伴随人类对地外空间的探索,以及空间通信的需求,研究电离层闪烁特性和其对电磁通信的影响也愈发重要。本文通过利用中国成都区域的GPS闪烁/TEC接收机在2018年1月至2020年12月接收的观测数据,通过编写数据批处理程序对多个卫星系统接收的多个频点卫星数据进行处理,提取出幅度闪烁指数S4、相