论文部分内容阅读
实际工程优化问题往往具有多极值、高度非线性、大规模、不连续等特点。传统优化算法往往难以适用于上述情形或得不到满意解。以进化算法为典型代表的随机性优化算法由于在寻优过程中引入了定向的随机因素从而具有良好的全局寻优能力。此外,该类算法亦具有优秀的问题适应性,使之成为近年来优化算法领域的研究与应用热点。然而随机因素的引入使得该类算法的寻优结果不可重复,不同随机性优化算法之间的性能优劣关系只能存在于概率意义上,因此无法沿用确定性优化算法的性能评价方法。当前针对随机性优化算法的性能评价多是基于经验的定性方法,存在着标准不一、理论依据薄弱等缺点。为了正确认识不同随机性优化算法的性能特点,对该类算法的性能评价结论必须建立在一种系统标准的、严谨定量的方法之上。针对这一需求,本文以数理统计理论为基础,建立了一套系统地定量地对比评价不同随机性优化算法各项性能的方法,并以粒子群优化算法(PSO)多个版本为对比评价对象对该方法做了初步应用。对无约束优化情形,本文以一定形式的随机分布作为描述算法在一定计算开销下求解特定优化问题所得目标函数值的数学模型,进而给出了能在概率意义上定量反映不同算法之间有效性与求解效率差异程度的指标的定义与计算方法。作为应用,分别以传统的基于优化结果均值下降历史的定性方法与本文发展的基于概率意义的定量方法对采用同/异步更新模式的两种标准PSO算法版本进行了性能对比评价。评价结论显示,根据本文方法分析得出的上述两个版本的寻优特点与早期文献论述一致;此外,新方法结论与传统方法结论协调,证明了本文发展的算法性能定量评价方法的可行性与正确性。对约束优化情形,本文定义了约束优化解的质量度量函数用来综合反映约束优化解的可行度与目标函数优化程度,据此可以将无约束优化情形下的定量对比评价方法推广到约束优化情形。作为应用,以采用罚函数与可行性排序作为约束处理机制的两种约束PSO算法版本为评价对象实践了上述方法。分析得出,定量对比评价结论与上述两个版本自身所具有的特点相符,证明了约束优化情形下本文方法的正确性。PSO算法具有简单高效的寻优机制,但相对容易陷入局部最优。针对这一问题,本文对标准PSO算法引入了模拟退火(SA)突变机制并深入探讨了SA突变机制中各关键要素的形式与参数取值。针对改进前后版本的定量性能对比评价证明了这一工作的意义。本文系统地研究了无约束与约束优化情形下随机性优化算法各项性能指标的统计意义与计算方法,藉此为该类算法的深入研究与改进工作以及实际工程优化应用中的算法选择提供可靠的参考依据。另外,对PSO算法引入了模拟退火突变算子,且被证明是一种简单有效的粒子群多样性维持机制。上述工作具有一定的理论价值及现实意义。