论文部分内容阅读
本论文是在国家自然科学基金(51261024,51075372,51265039,50775208),江西省教育厅科技计划项目(No.GJJ12405),机械传动国家重点实验室开放基金(No.SKLMT-KFKT-201514)和广东省数字信号与图像处理技术重点实验室开放课题(2014GDDSIPL-01)资助下展开研究。针对基于HMM故障诊断方法中的模型定义和估计过程存在着严重不足,将一种新的机器学习方法——无限隐Markov模型(iHMM)引用到机械故障诊断中,提出了基于iHMM的故障诊断新方法,并取得了一些创新性的成果。本论文主要研究内容如下:第一章,论述了本课题的提出及其展开研究的意义,并论述了传统隐Markov模型(HMM)的研究现状,特别是在机械故障诊断领域研究现状。详细论述了iHMM的国内外研究现状。在此基础上,提出了本论文的主要研究内容、结构安排和创新之处。第二章,论述了传统隐Markov模型的理论及其存在的不足,并在此基础之上,阐明了无限隐Markov模型的理论及算法。在iHMM中,首先,从Dirichlet过程进行状态间转移概率的计算推导。然后,使用分层Dirichlet过程进行隐状态状态机制和生成机制的推理。其次,对模型超越参数的推理、优化和似然估计。还通过仿真实例对iHMM推理算法进行了验证,仿真结果表明iHMM具有很好的状态数目发掘能力,能够准确的反映状态序列的结构特征。最后,从概率统计的观点出发,说明了iHMM在机械故障诊断中所发挥的作用。第三章,结合谱峭度和iHMM的各自特性,提出了一种基于谱峭度和iHMM的旋转机械故障诊断的新方法。在提出的方法中,谱峭度用于故障特征提取,iHMM用作识别器,利用谱峭度提取的故障特征输入到iHMM中进行故障识别,其中,以最大似然估计来确定设备运转中出现的故障类型。同时,将提出的方法与传统的HMM进行故障识别方法进行了对比分析。实验结果表明,提出的方法是有效的,能有效地区分不同的故障类型。提出的方法明显优于传统的HMM故障识别方法,克服了传统的HMM故障识别方法存在的不足。第四章,论述了基于Beam抽样(Beam sampling)的iHMM理论及算法,并将该算法应用到滚动轴承退化趋势预测中,并结合小波熵,提出了一种基于小波熵和Beam抽样iHMM的滚动轴承退化趋势预测的新方法。在提出的方法中,利用小波熵提取故障特征,输入到iHMM中进行退化趋势预测。仿真结果验证了利用小波熵用作评价性能退化评价指标的有效性。同时,提出的方法与传统的HMM进行退化趋势预测方法进行了对比分析。研究结果表明,提出的方法明显优于HMM性能退化预测方法,并通过相对误差指标充分反映出来。第五章,相对完整数据下的预测,缺失数据下的预测更困难,也是更有意义。本章详细论述了缺失数据下利用iHMM进行滚动轴承退化趋势预测的可行性,在此基础上,提出了一种缺失数据下的基于iHMM滚动轴承退化趋势预测,给出了缺失数据下iHMM预测模型建立及其预测方法。提出的方法能够较好的对前期的缺失数据进行预处理,使用预处理的得到的特征值进行预测模型的训练,再使用得到的预测模型进行滚动轴承退化趋势的预测,提出的方法还与完整数据下的iHMM预测结果进行了对比,研究结果表明,提出的方法在在部分监控数据缺失的情况下,该方法仍能较好的对滚动轴承的退化趋势进行预测。第六章,对本论文的研究工作内容进行了全面的总结,并对有必要进行进一步开展研究的工作进行了展望。