金刚石NV色心及其与二维谐振子相互作用的研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:jj2653026
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着量子信息技术的发展,人们逐渐认识到单一量子载体在许多应用场景具有局限性,因此出现了由不同量子载体构成的混合量子系统。以金刚石NV色心为例:NV色心具有很多优点,比如电子自旋态易于读出和操控,室温下相干时间长等,是最受欢迎的固态量子体系之一,在量子计算、精密测量、量子网络等领域具有重要的应用前景;然而,NV色心在原位电学调控方面遇到了挑战,在多比特扩展(即实现芯片上不同色心之间的耦合)方面遇到了难题。我们注意到,利用当前纳机电系统的相关技术,可以对固体中的声学模式进行原位电学调控,声子也具有很好的相干性且可长程传输。因此,解决上述挑战、难题的一个可能的思路是发展基于纳机电系统的声子体系与NV色心的混合量子系统。基于这样的背景,本文的主要工作内容如下:针对NV色心与纳机电系统混合量子系统,在色心方面,设计并搭建了NV色心测量平台,包括激光共聚焦系统及微波操控系统,为实现基于NV色心的量子信息应用创建了实验条件;制备金刚石NV色心系综并实现其光谱特性及光探测磁共振效应(ODMR)测量;利用NV色心系综实现了静态磁场测量,为后续使用微波脉冲序列提高测量灵敏度奠定了研究基础。在纳机电系统方面,选取具有原子层厚度的二维谐振子作为研究对象,采用光学探测方式,探测到功率较高情况下石墨烯二维谐振子的压缩效应以及非线性分布效应。最后设计了NV色心与纳机电振子耦合系统的实验方案,完成了高质量单个NV色心制备方法的探索,提出一维串联石墨烯二维谐振子与NV色心混合系统的实验方案,为后期研究其自旋-声子相互作用、色心原位电学调控、色心量子态通过声子模式实现长程传递奠定了基础。
其他文献
随着通信技术的不断发展成熟,低频通信已经无法满足人们日益增长的需求,对于卫星通信系统而言,目前使用最为普遍的是Ku/Ka波段,但在这两个频段内,信号通信带宽较窄,并且传输速率较低,会增加系统调制解调的复杂性。为了获得更大的信道容量以及缩短信号传送时间,国内卫星通信领域专家在如何利用毫米波以上频率的问题上进行了深入研究。但无论哪个频段,对一个通信系统来说最重要的还是信号传输的准确性。以功率放大器为核
随着无线电的发展,人们对频率源研究不断深入,研究不局限在单一结构频率源。混合式频率源相比于锁相环具有很高灵活性,能应对复杂的应用场景。本文采用双PLL(Phase Locked Loop)技术通过混频的方式实现多频段输出。混合式频率源输出频率相比于DDS(Direct Digital Synthesis)输出频率高,相比于PLL输出步进小。双锁相环混频PLL既可实现宽频带输出又可实现小步进,相比于
时间反演技术因具有良好的时空聚焦特性,目前已成为目标定位、目标成像、无线通信等领域的研究热点之一。该技术在解决电磁波传播过程中的逆问题与实现激励源的源重构应用中具有巨大的研究价值。本文围绕时间反演技术的时空聚焦特性,探索了一系列新型算法和改进算法,并将其应用在基于源重构的相控阵失效阵元诊断和电磁干扰源定位中,获得了良好的应用效果。具体研究内容分为以下四个部分:首先,本文基于数字信号处理方法对时间反
等离子体诊断,是研究高速飞行器返回地球时产生的黑障现象的一个重要研究方向。黑障现象产生的等离子体鞘套干扰实时通信,给各类飞行任务造成安全隐患和财产损失。因而,研究等离子体鞘套的电磁特性对解决黑障问题具有重大意义。利用大型激波管进行等离子体诊断是常用的一种方式,而用微波进行等离子体诊断是应用广泛的一种方法。本文主要研究了利用微波透射法诊断等离子体的电子密度和碰撞频率等参量,内容分为以下几个方面:第一
无线通信技术迅猛发展,衍生出多样的业务场景。但由于无线信道的开放特性,通信过程容易受到非法方窃听和欺骗的攻击。传统的认证与加密方案通常建立在网络协议栈的高层,面对日益增长的量子计算能力以及大规模机器连接等新兴业务场景,传统的安全机制面临挑战。基于此,本文针对无线信道天然的随机性与独特性研究了轻量级高可靠的物理层身份认证与密钥生成技术,作为传统安全方案的补充,主要工作包括:论文在单跳网络下研究了三种
近年来随着中国城市化水平的提高,高层建筑的数量也逐日攀升,随之而来的是高层建筑的安全检测以及消防安全问题,如何在火灾现场应对建筑垮塌并确保人身安全,成为了消防从业人员的巨大挑战。现阶段的建筑形变监测手段需要消耗大量人力、物力和时间成本,难以在火灾等恶劣环境中实现可靠的全方位实时建筑健康监测和预警。因此,消防从业人员急需一种工作于恶劣环境下的可靠在线建筑形变监测系统,确保消防抢险人员的人身安全并降低
随着高分辨率雷达的广泛应用,传统的目标检测算法对海面微弱目标的检测存在明显的性能瓶颈。海面上的慢速小目标回波微弱,雷达散射面积太小使得信杂比非常低,传统自适应检测算法很难奏效;复杂的空时变海杂波环境中,高分辨率观测不能满足传统大尺度下的统计特性,很难建立准确的目标模型;在对海观测获取到的大量数据中,目标和杂波的类别非平衡,目标相对海杂波的稀疏性使得海杂波的检测问题在传统的机器学习和模式识别上面临着
随着物联网技术的兴起,人类社会已经进入到一个万物互联的时代,而物联网核心技术则是诸如RFID、UWB等;这些技术同时也深入到了各行各业例如:自动驾驶、智慧货仓、智慧交通、VR体感游戏、导航等;而提供这些服务的前提,就是获取物体准确的位置信息。本文针对上述需求,分析了开源数据集的误差统计特性;其次,指出了经典定位算法模型的不足和局限,提出了一种鲁棒TDOA静态定位算法并讨论了最优基站定位问题和通信距
碳纳米管(cnt)凭借其量子电容特性、高迁移率、截止频率在THz以上的潜能、弹道传输特性,被认为是制造RF晶体管的理想半导体材料,到目前为止,世界各国都致力于高性能cnt FET的研究,然而除了关注于cnt FET本身的直流特性、截止频率、振荡频率外,基于cnt的RF电路芯片验证也是至关重要的,这可以表明其可以代替传统半导体来设计集成电路。本文着重研究了放大器的集成电路,主要的研究方法与成果如下:
随着互联网技术的普及和不断革新,Wi-Fi网络和智能移动终端在人类日常活动中所扮演的角色也越来越重要,同时由于人类的活动大部分都在室内环境下进行,所以人们对基于室内环境的位置服务的需求也不断增大。在室外定位中占据主导地位的卫星导航系统,其信号在穿透建筑的钢筋混凝土墙壁后衰减十分严重,精度也随之衰退到5m至20m,显然这样的定位效果无法满足空间较小的室内环境,因此许多室内定位技术应时而生,而Wi-F