论文部分内容阅读
液压阀是液压系统的最重要组成部件之一,液压阀的性能决定着液压系统的安全性、可靠性、准确性和稳定性。而流体流经液压阀阀口时,由于流体流动方向和流动速度的改变,阀芯上会受到流体的反作用力,这个力就是液动力。液动力不仅影响阀的操作力,使得输入信号与阀芯位移的关系变得不确定,而且还可能造成阀的自激振动,进而影响整个系统的可靠性与稳定性。尤其在高压、大流量、高换向频率时,液动力将极大的影响液压阀的控制特性,进而影响液压系统。因此,液动力是设计控制阀所必须考虑的重要因素,而且其方程还是分析液压系统特性的基本方程之一。论文在综合分析国内外液压阀液动力研究现状的基础上,发现这些研究都集中在滑阀和锥阀领域,而在转阀方面少有研究。本课题是在国家自然科学基金项目《阀芯旋转式大功率电液激振基础理论和技术》的资助下,设计新型转阀来实现激振缸大功率、高频率激振,对影响电液激振系统波形、振幅和频率的核心液压元件转阀进行动静态特性研究,对影响转阀控制特性的液动力进行仿真、理论研究,并搭建转阀液动力测量实验平台开展实验验证研究。研究探索转阀阀芯的不同沟槽形状、阀口开度大小、进出口压差对流量与液动力的影响,总结影响转阀液动力的因素并得出转阀液动力的理论计算公式。完善此新型电液激振系统的设计准则,对此类电液激振系统的开发、设计和研究提供理论指导和设计依据。本论文主要研究工作如下:1.通过SolidWorks设计用于新型电液激振系统的转阀装置,介绍电液激振系统的结构组成和工作原理,通过改变转阀装置的结构参数和工作参数可使新型电液激振系统具有激振频率高、振幅无极可调、波形可控等优点。2.通过Fluent对所设计的转阀进行流场CFD仿真分析,研究转阀不同结构参数(沟槽形状、开口大小、阀口数量)和不同进出口压差下转阀内部流场的静态特征,从仿真结果分析不同结构参数和不同工作参数对转阀流量系数、射流角和稳态液动力的影响。3.根据流场仿真分析,首次提出转阀内部节流形式和阀口开度大小的关系,并根据一级节流和二级节流的特点推导转阀在不同阀口开度下的等效过流面积理论计算模型,最后建立转阀稳态液动力理论计算模型。根据理论计算模型和仿真结果,分析液动力影响因素以及理论计算和仿真结果差异原因。4.设计并搭建转阀液动力测量综合实验台,根据获得的压力流量实验数据对仿真流量系数进行实验验证,同时以矩形沟槽、三角形沟槽和半圆形沟槽为例,在不同进出口压差下,研究不同沟槽形式对转阀液动力的影响,以及对液动力理论模型进行实验验证。