面向案件微博评论的情绪分析方法研究

来源 :昆明理工大学 | 被引量 : 0次 | 上传用户:guanxinyang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,法院工作已经成为互联网媒体和舆论关注的焦点,来势汹涌的网络舆情给法院工作造成了巨大的压力。面向案件微博评论的情绪分析有助于法院等相关部门及时了解和掌握案件微博舆情,然后进行舆情监控和传播引导。面向案件微博评论的情绪分析属于特定领域的任务,存在没有公共数据集、情绪表达具有领域性等研究问题,值得深入研究。本文研究面向案件微博评论的情绪分析方法,主要从以下几个方面开展研究:(1)案件微博评论情绪分析数据集的构建:带标注数据集的构建是有监督学习的基础,本文提出一种用于案件微博评论情绪分析的数据集构建方法。首先,从新浪微博平台采集了案件相关的微博评论数据。其次,根据案件微博评论情绪分类任务和情绪原因对抽取任务的不同需求,提出两种数据标注方法。最后,构建了案件微博评论情绪分类数据集和案件微博评论情绪原因对抽取数据集,为后面的研究奠定了重要的基础。(2)融合情绪知识的案件微博评论情绪分类方法:传统的情绪分类方法难以有效利用案件微博评论中常用的表情符号、领域情绪新词、否定规则以及程度副词规则等情绪知识。因此,本文提出一种融合情绪知识的案件微博评论情绪分类方法。首先,整合现有的情感计算资源构建了一个微博情绪知识库。其次,根据情绪知识库和考虑词性的作用定义了15种情绪知识,构建评论的情绪知识表示,并利用卷积神经网络和注意力网络提取深层的语义特征以及情绪知识特征。最后,融合语义特征和情绪知识特征完成情绪分类。在案件微博评论情绪分类数据集上的实验结果表明,本文方法相比基准方法更具有效性和先进性。(3)基于联合学习的案件微博评论情绪原因对抽取方法:情绪原因对抽取的基准方法是一种两步方法,存在误差传递问题。研究人员提出端到端的ECPE方法,称为ECPE-2D,可以克服两步方法的误差传递问题。但是,ECPE-2D保留了基于Bi-LSTM+Attention和Bi-LSTM堆叠的层次编码结构,存在不可并行处理和梯度消失等问题。为了更好地解决这些问题,本文提出一种基于联合学习的案件微博评论情绪原因对抽取方法。首先,基于预训练BERT和Transformer,联合学习情绪抽取和原因抽取,通过二维表示方案来表示文本中所有可能的情绪原因对。其次,采用一个二维Transformer模块来模拟不同情绪原因对之间的交互。最后,利用一个Softmax层来预测真实的情绪原因对。该方法将二维表示、交互以及预测整合成一个联合学习框架。在案件微博评论情绪原因对抽取数据集上的实验结果表明,本文方法相比现有方法更具有效性和先进性。(4)案件微博评论情绪分析原型系统:本文设计并实现了一个案件微博评论情绪分析原型系统。该系统集成了案件微博评论数据采集、案件微博评论情绪分类以及案件微博评论情绪原因对抽取等功能。为了方便用户更快速地访问服务,系统还提供了可视化界面。
其他文献
芒果表皮缺陷检测是实现芒果的智能化采摘、果实质量分级的重要前提。基于卷积神经网络的计算机视觉技术为缺陷检测提供了可行有效的方法,是目前最为主流的检测方式。在自然环境下,光照的强弱、背景的复杂、果实枝叶茎干的相互遮挡等制约因素下,给芒果表皮缺陷的检测带来了巨大的挑战。采用深度卷积神经网络,可以提取更多的特征,具有更加实时精准的识别效果。因此,本研究采用基于语义分割、实例分割的方法研究自然环境下芒果表
图像融合的目标是将来自同一场景的多幅源图像的互补信息进行融合,生成高质量合成图像。红外图像反映的是目标在红外热辐射下的能量分布,不易受风沙烟雾等复杂条件影响,但其可视性并不是很理想,特别是物体纹理细节信息表现较差。可见光图像主要与目标场景的光反射有关,物体辨识度高,但容易受到外部环境的影响,特别是被遮挡时就无法准确地捕捉目标特征信息。所以,红外与可见光图像融合能够综合两种成像的优势,通过结合二者的
钢水碳含量终点预测作为转炉炼钢重要的一环,准确的预测将直接关系到炼钢效率,有利于减少能源和原材料浪费。由于熔池内不同比例的钢水碳含量能够反映在炉口火焰颜色、纹理形态等信息的变化上,因此采用炉口火焰图像特征提取的终点碳含量预测方法为传统预测提供一种新的参考,但火焰作为一种复杂变化的非结构对象,具有较强的随机性和相似性,给特征提取带来不小的困难,进而影响到终点预测的准确性。针对上述问题,本文将从钢水碳
转炉炼钢生产过程中,终点碳温的准确预报是钢铁产业至关重要的一环,而碳含量的准确预报对于提高钢铁冶炼工艺具有重要的意义。本文针对转炉终点炉口火焰图像相似性高,传统特征方法难以提取区分碳含量相近的火焰图像的关键特征,从炉口火焰图像的颜色特征和纹理特征提取入手开展研究,为提高基于炉口火焰图像特征提取的转炉炼钢终点碳含量预测准确率打下基础。本文的主要研究内容如下:(1)采用基于卷积神经网络火焰特征提取的终
行人重识别是一种利用计算机技术判断摄像机收集的视频或图像中是否存在特定行人的技术,可以自动地对多个不交叉摄像机捕捉的行人图像进行匹配,因而在智能监控系统中发挥着显著作用。但现有的大多数行人重识别方法是在单个有标记数据集上进行训练和测试的,如果在源数据集上训练的模型直接应用到目标数据集上会产生因行人图像风格差异等因素引起的域偏移问题,从而导致最终的识别精度很低。现实场景中已标记的行人样本是极度缺乏的
在当今信息时代的背景和进程下,作为信息技术载体和媒介的印刷电路板(Printed Circuit Board,PCB),从我们日常生活中经常接触和使用的手机、电脑等各类电子产品,到军事中的飞机、卫星等领域都有着广泛的应用。由于工业生产中对PCB更高的要求加之现在的电子产品高度的集成化,PCB板的生产更加细化、走线结构更加复杂,从而导致PCB板带有缺陷的概率大大提升。PCB板必须保证线路连接、线距以
纤维结构是存在于太阳色球层中的一种呈现出喷射状态的线性拉长结构,研究色球纤维的动力学特征能够帮助人们对太阳大气质量平衡以及针状体的演变过程进行更进一步的研究。进行纤维结构动力学特征的研究的前提是对太阳色球纤维进行准确的识别和提取,因此选择一种高效准确的识别方法是当前人们的关注重点。在进行色球纤维识别前,我们首先对纤维图像的特点进行了分析研究,发现当前纤维识别的难点以及存在的问题仍然有许多。因为在色
预测和推理未来结果的能力是智能决策系统的关键组成部分。近些年,以深度学习为代表的机器学习预测算法取得迅猛发展,广泛应用于天气预报、自然灾害预警、疾病诊断等领域。然而,在太阳光球磁场演化研究方面,由于缺乏完备的数据集和全面的评价标准,以及演化过程中存在磁结构运动、形变、浮现、消失等多种复杂变化交织的问题,使得直接在时间和空间上预测磁场的演化过程具有较大挑战,所以目前尚无对太阳磁场的演化过程进行预测研
随着我国网络技术普及度的加深,网络社交媒体中产生了海量的带有情感色彩的文本数据。研究者们根据情感表达中是否含有情感词,将其分为显式情感表达和隐式情感表达,由于我国网民更倾向于通过含蓄的方式来表达情感,所以中文的隐式情感表达数量非常庞大。对这些海量的隐式情感表达进行分析,是情感分析研究中不可或缺的重要部分,在舆情分析、升用户体验以及改进服务和产品质量方面,具有广泛应用场景和重要研究意义。本文对源自社
随着电子商务的快速发展,服装市场的潜在价值也在逐步显现,针对服饰检索、服饰识别和服饰推荐等计算机视觉领域的研究出现一系列研究任务。我国有55个少数民族,民族服饰种类繁多,服装结构复杂,语义属性丰富,能够将服饰图像检索技术与民族服饰文化相结合,对民族服饰实现数字化,这对传统民族文化保护具有重要意义。民族服饰图像具有不同民族风格的服装款式、配饰和图案导致的民族服饰图像细粒度检索准确率较低的问题,本文提