论文部分内容阅读
【目的】脊髓损伤(Spinal Cord Injury,SCI)是一种严重的创伤性疾病,修复手段主要有手术治疗、药物治疗、细胞移植等。神经干细胞移植能够有效促进SCI后神经功能的恢复,是当前研究的热点。iPSCs诱导的神经干细胞(induced Pluripotent Stem Cells-Neural Stem Cells,iPS-NSCs)是一种具有自我更新和多向分化潜能的多能干细胞,自体取材避免了伦理学争议和免疫排斥,应用于细胞移植治疗脊髓损伤具有显著的优势。然而干细胞在体内存活率低、向神经方向分化较难,因此如何更好的促进其增殖、定向分化是众多研究者关注的焦点。国内外研究表明低强度脉冲超声(Low Intensity Pulsed Ultrasound,LIPUS)是一种可以促进多种细胞增殖、分化的物理刺激手段,本研究旨在明确LIPUS对iPS-NSCs细胞特性的影响以及LIPUS介导的iPS-NSCs对脊髓损伤的修复作用,为干细胞的优化和SCI的治疗提供一种新的策略。本研究通过:1)体外培养iPS-NSCs,将自主研制的LIPUS激励系统作用于iPS-NSCs细胞,观察细胞的形态学、增殖、分化和神经营养因子(Neurotrophic Factors,NTFs)分泌含量的改变,明确LIPUS最佳的刺激参数,并初步探索LIPUS干预后细胞增殖的调控机制;2)建立脊髓损伤的动物模型,于脊髓损伤局部移植iPS-NSCs和LIPUS-iPS-NSCs细胞,评价细胞移植后SCI大鼠损伤局部组织学形态、神经营养因子含量以及运动功能的改变,初步探讨LIPUS介导iPS-NSCs细胞移植修复脊髓损伤的效果。【方法】本实验研究分为体外实验和体内实验两部分:体外实验:利用自主搭建LIPUS细胞激励系统,以不同的刺激参数干预iPS-NSCs细胞,观察细胞的形态,采用CCK-8检测其增殖活性的改变,明确LIPUS最佳的刺激参数;借助最佳的激励参数,通过TUNEL、ELISA、Western Blot以及免疫组化等方法,观察LIPUS对iPS-NSCs细胞凋亡、分化以及NTFs分泌的影响,并初步探讨细胞增殖与Notch信号通路的潜在关系。体内实验:采用Impactor model-Ⅲ打击器建立Wistar大鼠脊髓损伤动物模型,分为假手术组、单纯损伤组、iPS-NSCs移植组和LIPUS-iPS-NSCs移植组,在大鼠脊髓损伤后7天进行细胞移植。术前1天、术后1天至8周,采用BBB评分评估大鼠后肢运动功能恢复情况;术后8周大鼠进行灌注取材切片,采用HE染色观察损伤局部空洞的面积,免疫荧光染色观察神经再生和胶质瘢痕形成的情况,ELISA检测局部脊髓组织中营养因子的含量。数据由统计学软件SPSS20.0进行分析,结果以均数±标准差(Mean±SD)形式表示,p<0.05表示具有统计学意义。【结果】1.本实验成功搭建了LIPUS细胞激励系统,LIPUS体外刺激iPS-NSCs细胞可以提高其增殖活性,且最佳的刺激参数为1MHz、8V(69.3 mW/cm~2);2.在最佳刺激参数下,LIPUS可以提高iPS-NSCs细胞活性,而对细胞凋亡没有产生明显的影响,因此1MHz、8V(69.3 mW/cm~2)的LIPUS是一种安全、无创的物理刺激因子,同时能够促进iPS-NSCs细胞向神经元方向分化,促进上清液中BDNF、NGF的表达;3.在最佳刺激参数下,LIPUS干预可以促进iPS-NSCs细胞中受体Notch1和靶基因HES1蛋白水平的表达;4.在脊髓损伤体内实验中,细胞移植后,尤其是LIPUS-iPS-NSCs移植组,脊髓组织的空洞减小,轴突增生活跃,反应性星形胶质细胞减少,脊髓组织局部BDNF、NGF表达水平提高;5.功能学评分结果显示LIPUS-iPS-NSCs移植组大鼠的后肢运动功能恢复明显优于其他损伤组,差异具有统计学意义。【结论】1.本研究中自主搭建的LIPUS激励系统可以明显提高体外培养的iPS-NSCs细胞的增殖活性,增加细胞中神经营养因子的表达,促进其向神经元方向分化,其中Notch信号通路可能是调控LIPUS促进iPS-NSCs细胞活性的潜在机制;2.移植LIPUS优化的iPS-NSCs种子细胞,可以明显的改善脊髓损伤大鼠的后肢运动功能,减少局部胶质瘢痕的形成,促进轴突的再生和NTFs表达。本研究证明LIPUS是一种安全、无创的体外激励方法,可以提高iPS-NSCs细胞在脊髓损伤修复中的作用,为优化细胞移植的种子细胞提供了新策略,为脊髓损伤修复提供新思路。