论文部分内容阅读
随着通信网络及硬件技术的发展,具有自组织、扩展灵活等技术优势的无线传感器网络为工业系统无线感知和无线控制提供了重要手段。然而,工业现场用频设备复杂,对无线传感器网络的干扰尤为严重,这对面向应用的工业无线传感器网络数据可靠实时传输提出了新的挑战。本文针对工业无线传感器网络MAC层关键技术开展研究。主要研究成果和创新点如下:基于现场工业环境,论述了工业无线传感器网络的系统架构,并利用现场实验测试结果,分析了工业无线信道对无线信号传输的影响。提出了一种适用于工业无线传感器网络的信道接入控制协议IWSN-MAC。无线传感器网络中,基于竞争的CSMA机制和基于调度的TDMA机制无法满足工业实时应用需求。本文根据工业任务事件时间约束的不同,提出了一种以划分正交子载波的方式定义事件优先级的方法,并基于事件优先级,设计信道接入控制判决机制。该机制针对工业应用环境的复杂性以及用户设备竞争信道的随机行为,由中心控制设备根据用户设备优先级裁定信道接入优先级队列,用户设备则根据判决结果依次接入信道并传输数据。论文运用DTMC模型的分析方法,得到数据成功传输概率、吞吐量和传输延时性能指标。分析表明,本协议作为一种按需接入的且适应网络动态变化的MAC协议,能避免信道冲突产生的不确定时延问题,提供确定的且可预期的时延性能,尤其适用于突发紧急事件的工业应用。该方法在信道利用率方面也有明显优势。提出了一种工业无线传感器网络中心控制信道资源分配算法TS-CA。工业无线传感器网络是无线传感器网络和其它网络的混合网络,由于无线信道资源有限,复用信道易引发设备间的数据碰撞问题。本文以抵抗信道干扰为目的,基于人工智能理论,提出了一种通过禁忌搜索的迭代启发式思想为网络设备分配信道的方法。本算法针对工业应用环境的复杂性,将干扰温度度量作为信道分配算法的终止条件,避免搜索迭代过程陷入局部最优解迂回求解的问题。通过不断搜索迭代的过程,算法可以为网络提供一种全局最优的信道分配方案。分析表明,本算法可以有效地避免工业无线传感器网络中的信道干扰。提出了一种工业无线传感器网络自适应功率控制算法CRN-PC。本文根据工业无线传感器网络的系统特点,基于认知无线网络的分析思想,分别对工业无线传感器网络的主用户系统和次用户系统设计基于干扰温度的累积干扰模型,并根据该模型,将工业无线传感器网络的数据传输问题建模为干扰约束下的网络效用最优化问题。论文运用数学规划理论,得出功率控制问题的求解算法。分析表明,CRN-PC算法的收敛平衡点就是满足系统期望的数据传输可靠性指标的最优发射功率,并经过凸优化理论证明了算法平衡点的全局最优性。该算法在用户设备的功率资源利用率方面也有明显优势。