论文部分内容阅读
本文研究了初始晶粒度分别为2μm、4μm和7μm TC21细晶钛合金的超塑性能及超塑性变形过程中的组织演变、断裂机制和变形机理,为合金的应用提供理论依据。在860℃~950℃温度范围和1×10-3s-1~5×10-4s-1应变速率范围内对合金进行了超塑性拉伸,拉伸结果表明TC21合金的超塑性能优异,晶粒度为2μm的试样在最佳变形温度(890℃)与最佳应变速率(5×10-4s-1)条件下,断裂延伸率高达1400%。实验条件范围内,晶粒度为2μm和4μm试样的应力敏感指数m大于0.5,极值达到0.87,晶粒度7μm试样的m值在0.3~0.45之间。利用金相显微镜对变形组织进行观察,发现变形会诱发两相晶粒沿拉伸轴方向联接长大,变形主要在β相内。变形初期,晶粒间不断协调,力求达到平衡态,动态再结晶现象明显,静态晶粒长大占主导地位;当应变量达到一定值时,组织很快达到动态平衡,进入高度稳定状态,从而保证合金获得优异的超塑性能。扫描电镜对断裂表面的观察结果表明:晶粒度为2μm与4μm的试样因微小空洞的聚集连接而断裂,断口宏观形貌为“点状”,微观SEM形貌由大小、深浅不同的韧窝组成;晶粒度7μm的试样断口形式为“刀尖形”,可能因解理而开裂,最终以滑移方式分离,因而在断裂表面留下形貌学上的信息。晶粒度为2μm与4μm试样的主要变形机制为晶界滑动。高温低应变速率下,晶界原子扩散控制的位错蠕变是主要的变形协调机制。随着应变速率的升高,温度的降低,原子扩散能力减弱,位错运动协调机制逐渐占主导地位。利用透射电镜在变形α相内观察到规则排列的位错墙。晶粒度为7μm试样的变形激活能值远大于纯钛的体扩散激活能,其变形属于高温塑性变形范畴,以晶内变形为主。