磁絮凝耦合重金属捕集剂EDTCCF酸性络合镍的深度脱除及磁种回收利用的研究

来源 :广东工业大学 | 被引量 : 0次 | 上传用户:wangxun416
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
电镀废水是含镍废水的重要来源,镍离子和生产过程中必须添加的各种络合剂结合而形成络合态镍,使得电镀废水处理难度更大。二硫代氨基甲酸盐(DTC)类重金属捕集剂EDTC可直接处理络合态重金属,为处理含络合镍废水提供了新思路。磁絮凝技术具有增强絮凝效果,改善絮体结构,进而提高絮体沉降性能的优点。本文旨在运用磁絮凝耦合重金属捕集剂EDTC对废水中的酸性络合镍进行深度脱除,探讨磁絮凝耦合EDTC脱除络合镍的机理并进行磁种回收试验。  本文首先选取CA-Ni、TA-Ni、SP-Ni三种模拟络合镍废水,考察了EDTC投加量、磁种投加量、初始pH和静沉时间对磁絮凝耦合EDTC脱除酸性络合镍的影响,试验结果表明:处理初始浓度为50mg/L的络合镍废水,磁种投加量70mg/L(350r/min,2min),Medtc/MNi=10(250r/min,2min),静沉5min,无需调节初始pH,此时残留镲浓度低于0.1mg/L,达到《电镀污染物排放标准(GB21900-2008)》中关于Ni污染物特别排放限值要求。采用磁絮凝耦合EDTC处理络合镍的效果明显优于单独使用EDTC的处理效果,投加磁种后可减少20% EDTC使用量,缩短静沉时间,提高出水水质。正交试验结果表明,影响络合镍去除效果的因素主次顺序依次为:pH值>EDTC投加量>磁种投加量>静沉时间。  其次,以磁絮凝耦合EDTC深度脱除络合镍的最佳试验条件为基础,进行磁分离技术脱除废水中的络合镍试验,考察了水力停留时间、磁种投加量和磁场强度对络合镍去除效果的影响,试验结果表明:处理初始浓度为50mg/L的络合镲废水,磁种投加量70mg/L(350r/min,2min),Medtc/MNi=10(250r/min,2min),水力停留时间3min,磁场强度3.5A,此时残留镍浓度低于0.1mg/L。正交试验结果表明,影响磁分离法脱除络合镍效果的因素主次顺序依次为:磁种投加量>电流强度>水力停留时间。运用磁分离技术脱除废水中的络合镍可缩短固液分离所需时间,具有十分重要的现实意义。  再次,本文系统且深入地进行了磁种的回收与利用试验。通过磁分离设备获得磁絮体,浸泡于NaOH溶液并搅拌3h后磁种回收率可到76.42%。将回收的磁种再用于磁絮凝试验,发现回收的磁种依然可以增强絮凝效果。回收磁种与未使用磁种的SEM和XRD表征结果显示回收磁种在形貌上未发生明显变化,且回收磁种中Fe3O4含量较高。  最后通过测定Zeta电位,粒径分析和分形维数研究磁絮凝耦合重金属捕集剂EDTC脱除废水中络合镍的机理。Zeta电位分析表明通过加载磁种增强了磁絮体在碱性条件下的稳定性。pH<7时,磁种与EDTC通过静电引力相互结合,pH=6.5-7.5时,磁种与絮体由于静电引力而相互吸引,形成大量以磁种为核心的磁絮体,从而增强了络合镍的去除效果。粒径分析和分形维数分析显示磁种的加入可以增大絮体体积,减少溶液中的微小絮体并增加絮体的密实度,进而提高絮体的沉降性能。
其他文献
新时期“大众创业万众创新”经济与人才培养战略的提出,为我国高校大学生的创新创业活动指明方向,也能够有效推动社会产业结构的不断优化与革新.在我国经济下行压力逐渐增大
创业型大学众创空间建设应遵循市场导向、分类导向及特色导向的原则.创业型大学众创空间建设的主要内容包括推动建立开放、扁平、社交化平台,不断整合多样化资源要素,打造创
大学生农村创新创业是高等教育的重要组成部分,随着东北振兴环境的勃起,要从现实层面解决大学生农村创新创业问题,必须正视其存在的不足,并辅以合理的对策机制,才能从根本上
稀土RE-Mn基合金化合物因其独特的晶体结构而具有丰富的磁学性能(磁热效应、磁阻效应、磁致伸缩效应等)。稀土RE-Mn合金相图对研究该系列合金化合物的晶体结构以及磁性能具有重
氧化铋(Bi2O3)被认为是一种有应用前景的镍氢电池负极材料,具有低成本、低毒、安全性高等优点。然而实际上有关于氧化铋作为镍氢电池负极材料的报道却很少,本文围绕氧化铋材料的
The anomalies of electric-magnetic field and self-potential before earthquakes are important precursory phenom-ena. A simulating experiment study on the variations in ultra-low frequency (ULF) magneti
近年来,全国因城市燃气管道泄漏而引发的火灾、爆炸等事故频频发生,事故所造成的环境破坏、财产损失和人员伤害更是让人触目惊心。因建筑布局多样化、人口密集等原因,居民住宅区
近年来,有机无机杂化太阳能电池发展迅速。已有研究表明,聚三己基噻吩(P3HT)用作可以表现出优异的性能。本论文使用聚三己基噻吩(P3HT)作为活性层给体材料,使用电化学聚合方法,聚合过程简单,聚合时间只有十几秒,从而避免了传统化学方法聚合P3HT的复杂工序。我的论文的一个创新点是使用了带有噻吩基团的小分子物质——三噻吩硫醇(T3SH)对ITO(电聚合工作电极)进行化学接枝,使ITO的表面带有噻吩基
随着因特网的迅猛发展和个人计算机的不断普及,人类社会进入了一个前所未有的信息量急剧增加的时代,这激起了人们对光纤通信传输速率的极高要求以及对系统通信容量的巨大需求。