玻色-爱因斯坦凝聚系统的混沌控制与同步研究

来源 :长春理工大学 | 被引量 : 0次 | 上传用户:ogldfish
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
玻色-爱因斯坦凝聚(Bose-Einstein condensation,简称BEC)是一类涉及物理学诸多领域的普遍物理现象。1924年在玻色的启发下,爱因斯坦预言了当温度足够低时服从玻色统计的理想中性原子气体将发生凝聚现象。由于实现BEC的条件非常苛刻,直至1995年,人们才通过激光冷却、静磁阱与蒸发冷却等技术实现了近理想气体碱金属原子的BEC。BEC是由上万乃至上百万原子构成的宏观量子系统,它的原子完全失去了孤立粒子的特征。BEC将量子现象带到宏观尺度,其物质波可由单一的宏观波函数来描述。随着BEC在实验中的实现,该领域的相关研究逐渐成为了科学领域的热门研究课题。利用激光的相干叠加形成的光学晶格也为人们便利而又精确操纵BEC提供了一个非常有效的工具。它在 BEC的研究中应用广泛,光学晶格与 BEC的结合为我们开拓了许多新的研究方向。BEC是一个研究量子力学基本问题的宏观系统,它在原子钟、原子激光、量子计算、量子信息处理等很多领域有着重要的应用。作为一个典型的非线性系统,混沌在BEC中的存在已经得到证实。鉴于这种凝聚物质广泛的应用前景,基于混沌对BEC稳定性的影响,为了更好的利用和操控BEC,对BEC系统的混沌产生、控制及同步的研究是非常有价值的工作。该研究对凝聚体的合理利用以及新材料的研制都具有极其重要的意义。  本文基于 Gross-Pitaevskii(G-P)理论形式的弱相互作用玻色理论,以原子的Hartree-Fock平均场理论框架下的G-P方程为主要模型,主要对装载在运动光学晶格中具有阻尼效应的BEC系统的混沌特性、混沌控制和混沌同步问题进行研究。另外,对一维斜光学晶格BEC系统的混沌行为、混沌控制及混沌同步进行了有益的探讨。主要包括以下几方面内容:  1.首先系统地介绍了非线性系统中混沌理论、混沌控制、混沌同步研究的发展历史。对本论文的研究BEC系统及其性质、BEC中的混沌研究进展进行介绍。  2.主要研究了运动光学晶格中原子间呈相互吸引作用的 BEC原子的稳定性和空间混沌行为。通过理论和数值分析,得出系统的混沌区域的参数范围。数值计算结果给出了一定参数条件下系统随不同参数变化时的最大李雅普诺夫指数(Lyapunov exponent)图、分岔图、混沌吸引子、时间序列及功率谱,进一步阐明了运动光学晶格BEC的混沌特征。  3.提出了实现BEC系统混沌控制的四种方法,即常数偏移法、周期驱动力法、小波函数控制法和线性反馈法。通过数值模拟分别计算利用上述四种方法时的最大Lyapunov指数随控制参数变化图和分岔图。由Lyapunov稳定性理论可知,只有最大李雅普诺夫指数为负值时,系统才会处于稳定态。并给出控制参数取不同值时的周期轨道所对应的相空间吸引子图和时间序列图,从而用数值计算结果验证了所提方法的有效性。  4.研究了两个BEC系统的混沌同步或反同步。利用Lyapunov稳定性理论、线性稳定性理论及Routh-Hurwitz判据,理论分析了正弦耦合、线性耦合、双曲正弦耦合和激活控制法实现BEC系统的混沌同步或反同步演化过程,并得到能实现混沌同步的各种耦合参数的条件,通过数值计算证明上述方法的可行性和有效性。并分析了混沌同步时间和控制参数之间的关系,为实现运动光学晶格BEC系统的混沌同步和反同步提供几种有效的方法。  5.对一维斜光学晶格中BEC系统的动力学方程进行数值求解,由吸引子图和时间序列图说明此系统具有的混沌特征。讨论倾斜因子、光学晶格振幅及初始条件对此光学系统的混沌运动的影响,并分析了采用常数偏移法实现混沌控制的效果,从而找到实现系统混沌控制的可行性方法。  最后,对本文的研究工作进行归纳和总结,对玻色-爱因斯坦凝聚这一领域的研究发展前景进行展望,从而为下一步深入研究找到新的方向。
其他文献
纳米结构材料以其奇异的性质而受到人们的广泛关注,其中以碳纳米管和石墨烯纳米带为典型代表的基于碳结构的纳米材料因可以作为纳功能器件而受到了高度的重视。很多基于碳纳
暗物质的理论与实验研究是天体粒子物理学的重要研究课题,暗物质是宇宙中物质的主要组成部分,并对星系的结构和形成产生重要影响。暗物质可能是由最轻的超对称粒子构成,这些
信息安全中的图像加密技术的研究是一项国际前沿课题,具有重要的学术价值,其研究成果可以直接应用到防伪与安全验证当中,不仅具有很强的应用价值以及广阔的发展前景,而且具有