【摘 要】
:
自身免疫性疾病是指由于某些原因造成免疫系统对自身成分的免疫耐受减低或破坏,致使自身抗体或致敏淋巴细胞损伤自身器官组织而引起的疾病。抗核抗体(Antinuclear Antibodies,ANA)作为自身免疫病患者中最常见的一类自身抗体,对相关疾病的分类、鉴别、分型、预测、预后及预防等具有重要的临床意义。传统的ANA检测以手工操作为主,需要人工对荧光显微镜下的ANA图像进行判读,并判断其所属的荧光模
论文部分内容阅读
自身免疫性疾病是指由于某些原因造成免疫系统对自身成分的免疫耐受减低或破坏,致使自身抗体或致敏淋巴细胞损伤自身器官组织而引起的疾病。抗核抗体(Antinuclear Antibodies,ANA)作为自身免疫病患者中最常见的一类自身抗体,对相关疾病的分类、鉴别、分型、预测、预后及预防等具有重要的临床意义。传统的ANA检测以手工操作为主,需要人工对荧光显微镜下的ANA图像进行判读,并判断其所属的荧光模式。但该方法耗时耗力,且判读结果受到了主观经验的影响。为了解决ANA荧光模式自动识别的问题,本文在卷积神经网络的基础上,引入了多实例学习方法,并且针对多实例学习方法中存在的问题,制定了相应的改进方案。本文主要工作如下:1.针对ANA荧光模式识别任务,本文引入常用的卷积神经网络模型和最新的针对多标签分类任务的神经网络模型,并分别测试其在ANA数据集上的效果。2.本文创新地为ANA荧光模式识别任务引入多实例学习方法,并将其分为基于包训练的多实例学习方法和基于实例训练的多实例学习方法。实验结果证明了多实例学习方法在ANA数据集上的有效性。3.基于实例训练的多实例学习方法中存在实例标签不可信的问题,这导致模型在训练时受到了噪声的干扰。因此,本文分别从先验知识和实例熵的角度出发,对实例标签可信度加以估计,并将该估计值转换为实例在模型训练时的采样概率。实验结果证明,基于先验知识和基于实例熵的改进方案分别在一定程度上缓解了实例标签不可信的问题,提升了模型的表现。4.基于实例熵的改进方案无法冷启动,而基于先验知识的改进方案比较粗糙,因此本文将这两种方案进行融合。实验结果证明,融合后的方案克服了各自方案中固有的缺点,更好地缓解了实例标签不可信的问题,有效地提升了模型效果。
其他文献
近年来,随着物联网以及人工智能的飞速发展,计算机的计算性能和信息处理能力得到了极大提升。然而计算机硬件设备的运算速度越快,运行的应用程序越复杂,设备消耗的电量也越大。由于受到计算机硬件设备大小和芯片制作工艺的约束,降低计算机硬件功耗变得越来越困难,所以从软件层面降低功耗的办法受到了普遍关注。而软件功耗评估作为软件功耗优化研究的基础,更是成为了重点研究对象。现有软件功耗评估方法大多集中于软件功耗的建
近年来,倾斜摄影测量技术在大规模场景自动化建模方面获得了广泛的应用,成为了目前日益重要的数字资产。在实际应用中,由于模型数据可能需要不断更新以及保护知识产权等原因,往往需要将模型数据集中保存在服务器上。而在客户端应用需要渲染时,实时地通过网络传输最新数据来完成渲染。由于三角网格在几何、顶点索引和纹理信息上的紧耦合性,使得场景数据必须完整传输后才可以在客户端开始渲染。在网络带宽不稳定时,无法保证数据
图像是信息的重要载体,所呈现的内容丰富多样。前景通常是图像内容的关键信息,人们在观察分析图像时也会重点关注这部分内容。在现实生活和工作中,前景提取被广泛应用于图像处理相关领域,如自动驾驶、影视特效等领域。前景提取结果的准确率会直接或间接影响后续的图像处理环节。人眼视觉感知物体的过程具有整体优先效应,即先感知物体的整体视觉形象,再感知其局部细节。为进一步提高前景提取的准确率,本文从人眼视觉感知的角度
近年来,由于互联网的快速发展,网络中的内容与信息呈爆炸式增长,非专业人员想要从搜索引擎获取有效医疗信息的难度进一步加大。同时,由于我国的医疗建设水平无法跟上患者的就医需求,医患矛盾的现象始终得不到根本的解决,所以问诊难的问题普遍存在。随着大数据和人工智能时代的到来,人们获取各类信息的方式开始变得更加敏捷和高效,加快实现医学领域的信息化是一个迫切且具有重要意义的问题。为了方便患者在需要就医时能及时地
藏族医学,简称藏医,是中国传统医学的重要组成部分。然而,藏医的疾病诊断与治疗过程十分依赖医生的个人经验。同时,藏医院的信息化建设相对落后,以电子病历为基础的决策支持系统建设尚处于起步阶段。这些问题已经对现阶段藏医的传承和发展产生阻碍。本文依托青海省自然基金项目——“基于数据挖掘的藏医诊疗决策支持系统关键技术研究”,以藏医用药决策支持为切入点,将数据挖掘技术、推荐算法与藏医用药理论结合,借助青海省藏
如何更高效地制作具有较强真实感的可变形人体角色动画一直是计算机三维动画技术研究中的热点之一。为了提高人体角色动画真实感,研究者们通常采用物理或动力学模拟的方法,在初级运动(如行走等)的基础上模拟人体运动过程中的次级运动(如脂肪抖动等),从而满足人体角色动画的真实感要求。而为了提高动画制作效率,研究者们通常采用动作捕捉技术捕获真实人体的不同运动状态信息再结合手动编辑和调整的方法。基于物理的传统模拟方
噪声作为一种特殊的数据形式伴随着信号的出现而出现,其按概率密度函数可分类为高斯噪声、椒盐噪声、伽马噪声、瑞丽噪声等。图像噪声的产生会使其含载的信息受到干扰,对后续依赖于图像数据的处理如数据挖掘、机器学习、图像识别等造成很大影响。经典的图像去噪算法针对二维图像数据,应用各种先验知识与数学模型在尽可能保留原始图像细节的前提下最大程度去除噪声干扰。然而对高光谱图像(Hyperspectral image
三维目标检测在汽车自动驾驶、机器人环境感知等应用中占有重要的地位,主要研究如何有效地感知三维环境信息,对感兴趣目标进行准确分类和定位。相比于二维目标检测,三维检测由于维度增加更具有挑战性。一方面,各类传感器数据单独应用于三维场景理解时都有不足之处,例如激光雷达获取的点云稀疏且不规则;相机获取的图像缺乏空间深度信息。另一方面,物体在空间中随机分布,当目标距离远或部分被遮挡时,容易出现漏检情况。针对以
随着交通信息量爆炸式地增长,难以仅凭人工处理方式实现对其的管理,以系统化和智能化方式对交通数据进行的操作的智能交通系统逐渐在现代交通管理中占据了重要地位。车辆作为交通中的一个重要组成成分,要完成整个系统的智能化管理,使用各种现代技术处理车辆数据是智能交通中不可或缺的一个重要环节。现阶段用于车辆检测与识别的技术中存在诸如处理计算量较大、效率较低等问题。针对上文中提到的车辆检测与识别技术中存在计算量大
在当今这个数字化、信息化高速发展的时代,“互联网+”技术风靡全球,微电子技术与互联网技术相结合成为许多行业发展的重点,使得电子产品的发展逐步走向微小化、精密化,这也推动了电子产品组装工艺的进步,点胶机在电子产品的表面贴装中起着十分重要的作用。和国外成熟的自动化点胶设备相比,我国点胶机无论是在点胶精度还是点胶速度上都有很大差距。点胶机在点胶加工的过程中会产生多种误差,其中主要包括与机床组件运动过程中