论文部分内容阅读
氧化铟(In2O3)是宽能隙多功能新一代半导体材料,有着广泛的应用前景。In2O3具有良好的透明导电性,已被应用在太阳能电池、平板显示、防静电膜、发光显示等方面。In2O3具有良好的气敏性,是一种新型高灵敏度气敏材料,被广泛用于气体传感器。简而言之,半导体In2O3具有禁带宽度大、饱和电子漂移速度高、介电常数小、击穿电场强度高、强抗辐射能力和良好的化学稳定性等特点,非常适合于制作抗辐射能力强、频率高、功率大、集成度高的电子元件。利用此特性,In2O3还可以用来制作半导体激光器和发光二极管等,因此In2O3成为国际上研究的热点方向。实验上对In2O3晶体进行了许多研究,不同方法制备的In2O3晶体在光学性质方面表现出了差异性,归因于制备过程中In2O3晶体中不同浓度的In空位或O空位。理论上也对In2O3晶体的物理性质进行了研究,但以前的研究大多基于DFT,计算的带隙和实验值差异较大,且对In2O3导晶体的缺陷和透明导电机理的研究还不够透彻。因此本文用计算机模拟的方法对In2O3晶体的缺陷问题进行了研究,并用最新的G0W0+BSE方法对In2O3的透明导电机理进行了深入研究。本文主要由六部分组成:In2O3晶体研究背景的介绍(第一章);计算机模拟的理论基础和软件包介绍(第二章);In2O3晶体缺陷的研究(第三章);In2O3晶体不同算法的电子能带的研究(第四章);对In2O3晶体的光学性质和光吸收机理的研究(第五章);全文总结(第六章)。第一章,介绍了In2O3晶体的研究背景,主要包括:晶体的基本性质介绍、晶体的制备方法、晶体的研究现状以及本文研究目的和研究内容。第二章,介绍了密度泛函理论(DFT)和多体微扰理论(MBPT),简要介绍了本文使用的两款软件VASP和WANNIER90。第三章,利用VASP软件模拟计算了完整晶体及含点缺陷晶体的能量,对不同外界环境下的点缺陷和缺陷对进行了研究。第四章,用VASP软件,基于GGA、GGA+U和HSE06三种方法,计算了In2O3晶体的电子结构。并在此基础上,用G0W0近似对能带结构进行修正,比较能带结构的准确性,发现HSE+G0W0计算的能带结构和实验值符合的很好。第五章,在HSE06+G0W0基础上,求解BSE方程,计算了In2O3晶体的光吸收谱等性质,解释了In2O3晶体的透明导电机理。第六章,全文总结。