【摘 要】
:
空气弹簧刚度低、承载高,在精密制造与测量、航空航天航海等领域高端装备隔振方面具有明显的优势。然而,空气弹簧一般需要借助橡胶或活塞式结构将高压气体密封于承载腔体内,由于橡胶材料的微观孔隙导致气体泄漏不可避免,这给被隔振设备长期服役的位姿稳定性带来极大挑战。如何在保证高隔振性能的前提下大幅提升气密性已成为空气弹簧隔振技术发展的瓶颈。本文摒弃橡胶膜直接密封气体的传统思维,创新性地提出“橡胶膜-粘性流体-
【基金项目】
:
国家科技重大专项子课题“浸没光刻机动力学及超稳定结构设计方法”(2017ZX02101007-002); 装备预研重点实验室基金“近零刚度自适应变参数被动减振新方法”(6142003190404);
论文部分内容阅读
空气弹簧刚度低、承载高,在精密制造与测量、航空航天航海等领域高端装备隔振方面具有明显的优势。然而,空气弹簧一般需要借助橡胶或活塞式结构将高压气体密封于承载腔体内,由于橡胶材料的微观孔隙导致气体泄漏不可避免,这给被隔振设备长期服役的位姿稳定性带来极大挑战。如何在保证高隔振性能的前提下大幅提升气密性已成为空气弹簧隔振技术发展的瓶颈。本文摒弃橡胶膜直接密封气体的传统思维,创新性地提出“橡胶膜-粘性流体-高压气体”的多层次-多介质组合密封思路,进而分析设计新型高气密性空气弹簧隔振器原型,并开展相关的试验验证测试。论文的主要工作与创新如下:首先,针对空气弹簧低刚度、高气密性需求,依据达西定律分析不同流体在空气弹簧橡胶膜微观孔隙结构中的泄漏机制,阐明流体粘度是影响泄漏率的最主要因素,据此创新性地提出“橡胶膜-粘性流体-高压气体”的多层次-多介质组合密封新思路,并阐明高气密性空气弹簧总体方案。其次,综合考虑压缩气体和橡胶膜结构对空气弹簧刚度的影响,建立了空气弹簧的刚度和应力分析模型,分析了橡胶膜关键尺寸和硬度、承载区域尺寸及边缘圆角等参数对空气弹簧静刚度以及橡胶膜应力分布的影响规律。结合理论建模和有限元工具,分析了含轴向腰形孔的紧凑型水平隔振橡胶环对降低径向刚度的有效性。进一步完成了高气密性空气弹簧承载及密封的结构详细设计,并研制了高气密性空气弹簧隔振器原型。最后,完成了所研制空气弹簧隔振器原型的静刚度测试,结果表明理论与实测结果相比误差仅3.86%。针对常规气压测量法测试低泄漏率空气弹簧时相对误差偏大的问题,提出浸水测量气体泄漏量的高气密性直接检测方法,分别设计了密封气嘴和橡胶膜的气体泄漏特性测试方案。对密封气嘴完成了持续10天的气体泄漏测试,结果表明以气体压降表示的气嘴泄漏率平均仅0.006%/天,且泄漏率随时间增长逐步降低。进一步完成了空气弹簧长期受载的支承高度稳定性测试,结果显示气体泄漏和橡胶膜蠕变综合作用下40天内支承高度下降约0.115mm,表明空气弹簧整体泄漏率不超过0.068%/天。本文综合考虑橡胶膜对空气弹簧刚度、承载和气密性的影响,提出了高气密性空气弹簧设计方法和高气密性精准测试方法,结果证明其气密性得到了显著提升。
其他文献
近年来,3D打印技术发展迅猛,金属激光3D打印作为3D打印体系中最前沿的激光技术之一,在航空航天、汽车船舶、医疗器械等领域应用广泛,其中钛合金是迄今应用最为广泛的激光3D打印航空零件用金属材料。而激光3D打印用钛合金粉末的性能是决定打印成形产品质量的关键因素,目前我国应用于航空航天的高性能激光3D打印用钛合金粉末大多依靠国外进口。因此,研究具有自主知识产权的激光3D打印用高性能钛合金粉末制备关键技
汽车大梁钢是汽车结构用钢的一种,主要应用于各类汽车的纵梁和横梁等结构件。为了响应国家节能减排的号召,汽车轻量化已成为汽车结构用钢的一种发展趋势,汽车大梁钢510L的成分设计和性能指标已不能满足大梁钢的生产和使用要求,现如今不仅要求更高的强度,而且还需要具有良好的塑性、韧性和冷弯性能。因此,开发低成本的汽车大梁钢610L迫在眉睫。传统汽车大梁钢610L常采用高Mn、高Nb的成分设计思路,合金成本较高
塑料的发展和应用给人类生活带来了前所未有的便捷,但传统非降解高分子过度使用导致的白色污染给人类生存和发展带来了新的挑战。温室气体二氧化碳(CO2)与环氧化合物共聚合成的CO2基聚碳酸酯具有良好的生物降解性、生物相容性及媲美聚烯烃的阻隔性能,在包装和农用地膜等领域可作为传统非降解聚合物的理想替代品,解决废弃塑料的污染问题。目前,CO2基聚碳酸酯的大规模应用仍面临以下难题:1)机械性能或热学稳定性不足
随着交通越来越便利,汽车行业也越来越发达,人们对汽车的要求不仅仅再局限于功能性和安全性,对于舒适性的要求也越来越高。研究人员发现,将悬架结构引入座椅,可大幅提升汽车座椅的隔振性与舒适性,降低驾驶员在长途驾驶中的疲劳感,从而提升驾驶安全性。磁流变阻尼器以磁流变液为介质,由于磁流变液有着随电流改变而改变自身分子排列的特点,研究人员将其用于制作磁流变阻尼器,使其拥有了区别于传统阻尼器的显著优点:阻尼连续
近年来,双横臂空气悬架广泛应用于中高端新能源客车,作为双横臂悬架与空气弹簧的结合体,具有良好的运动学特性、易于调整的侧倾和纵倾特性以及优异的隔振性能,显著提升了整车的操纵稳定性和平顺性。由于客车结构形式和载荷边界的特殊性,客车悬架系统的设计匹配主要以可靠性为依据,在悬架K&C特性以及整车动力学特性等方面研究略显不足。针对上述情况,对双横臂空气悬架参数设计匹配、悬架K&C特性以及整车动力学性能等方面
7N01铝合金具有良好的综合性能,被广泛应用于高速列车、地铁等轨道交通车辆上。目前,传统的MIG焊仍是铝合金车体主要的焊接方式,但该焊接方式易形成气孔,且在接头部分熔化区或多层焊层间区域易发生晶界液化或液化裂纹。搅拌摩擦焊(FSW)是一种新型的固相连接技术,在一定程度上避免了 MIG焊的这些缺点。但由于搅拌摩擦焊过程中接头各区域经历了不同程度的热-力耦合影响导致其微观组织特征由母材至搅拌区呈梯度变
近些年来,桥梁断裂、建筑物垮塌、边坡失稳而引起的灾害频发。桥梁、建筑物、尾矿坝、山体斜坡等发生宏观位移并断裂、垮塌、滑坡之前,都会发生不在合理范围内的微形变。因此,进行快速、高精度的微形变监测是预防这些灾害发生的必要措施。地基干涉合成孔径雷达(Ground-Based Interferometric Synthesis Aperture Radar,GB-InSAR)技术是微形变监测的重要手段,能
凸轮轴作为汽车发动机配气机构核心机械基础件,其质量对发动机的功率、凸轮挺杆摩擦副的寿命、配气机构的工作状态都有直接影响,决定着发动机乃至整车系统的性能以及可靠性,其失效将导致发动机故障、交通事故甚至是人员伤亡。因此,研究大批量生产时凸轮轴的高速高精无损检测方法与装备具有重要的应用价值。本文以目前普遍使用的组合式凸轮轴为研究对象,提出了用于凸轮轴凸轮表面微细裂纹的差动涡流检测方法。针对凸轮表面微细裂
针对目前全球爆发的能源危机与环境问题,新能源汽车作为采用非常规车用燃料为动力来源或新型动力装置的新技术汽车,成为替代传统燃油车的不二选择。其中纯电动汽车具有诸多优点,被认为是最有前途的新能源汽车。但是,纯电动汽车由于续航距离短和充电时间长限制了其普及进程。制动能量回收系统可在一定程度上减少能量的耗散,提高续航里程。本文通过分析制动能量回收影响因素,从制动能量回收控制策略出发,主要研究内容如下:(1
薄板结构是工业领域的一种常用的结构形式,它具有质量轻、散热性能好等优点,但由于其刚度低、阻尼小,振动声辐射通常较大。研究薄板结构表面阻尼处理技术,开发新型高效的粘弹性阻尼层结构,有效提高其阻尼特性,是降低板结构振动噪声的有效手段之一。本文从阻尼复合板结构中粘弹性层的拉伸弯曲变形及剪切变形耗能特性出发,提出了含弹性约束的新型被动复合阻尼层(Composite Damping Layer with E