论文部分内容阅读
在1991,瑞士科学家Gr tzel等人对于染料敏化太阳能电池(DSSCs)的研究取得关键性的突破。由于其制备工艺简单,具有高效、低成本特点,近二十年来受到了世界各研究组的广泛关注。第一章,简要的介绍了染料敏化太阳能电池(DSSCs)的研究背景、结构组成、工作原理、主要性能参数、电极以及电解质的发展。同时对染料敏化剂的最新研究进展进行了综述,在此基础上提出了本文设计思想和研究内容。第二章,设计合成以己氧基苯取代的二噻吩吡咯(DTP)作为共轭桥的三苯胺类有机光敏剂XS54-XS56,同时合成了以环戊二噻吩作为π-共轭桥光敏剂XS57作为参比。系统的研究了染料的光物理、电化学和光伏性能。通过电池性能测试,以4-己氧基苯取代的DTP桥三苯胺染料的电池性能要优于相同条件下环戊二噻吩为共轭桥的染料XS57。在钴电解质中,AM1.5标准光照的条件下,染料XS54的短路电流为13.5mAcm–2,总的光电转化效率可以达到8.14%。第三章,为了深入研究DTP桥的氮取代基团对染料性能的影响,我们又合成了氮杂环取代的DTP为共轭桥的芳胺染料XS58-XS60。通过测试发现,引入N,N-二己基苯和咔唑基团到染料分子的DTP桥上,可以很有效的抑制电子复合,从而提高电池的短路电流和开路电压。同时我们考察了染料浸泡时间效应对电池性能的影响,在浸泡36小时条件下,染料XS59的光电转化效率最高达到8.20%。第四章,为了进一步提高DTP系列染料的光伏性能,我们将六己基取代的三聚茚基三芳胺引入到染料的供电基团当中,合成了有机光敏剂M28和M29。通过与参比染料C241比较,引入三聚茚基团可以拓宽光谱吸收和提高摩尔吸光系数,而且还可以抑制电子复合,延长电子寿命。最终,染料M29电池的开路电压可以达到到953mV,光电转化效率也可以提高到8.5%。第五章,吲哚啉类染料敏化电池具有较高的短路光电流密度,但是其开路电压较低,很大程度上限制了光电性能的提高。本章中,我们将DTP作为共轭桥连引入到吲哚啉类染料分子中,设计合成了染料XW69-XW71,并成功的将其应用到薄膜非碘基DSSCs中。在钴电解质中,AM1.5标准光照条件下,染料XW70电池器件获得了943mV的开路电压,总的光电转化效率达到8.78%。