基于无模型自适应的航空发动机控制与验证

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:papyevin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
航空发动机因工作包线宽广、工作环境多变,以及强非线性和不确定性等特性,其控制系统设计要求严格。航空发动机控制系统的研究工作一直备受航空领域和控制应用领域的重视,其中结合自适应控制的算法被认为是未来发展的趋势。因此,本课题以某型双转子涡扇发动机为被控对象,开展无模型自适应控制算法研究以及搭建硬件在环仿真系统。最后,通过开展硬件在环试验,为所研究的控制算法的实际应用提供可行性验证。本课题主要工作如下:(1)研究航空发动机非线性数学模型的建模方法。在分析航空发动机各部件组成后,介绍各部件性能参数的计算。在部件级建模方法的框架下,基于气体动力学、热力学等基础定理,建立各部件的数学模型。最后,根据功率守恒、能量守恒和流量守恒方程,对各部件的非线性方程进行联立求解,得到表征航空发动机特性的非线性数学模型,即为本文的被控对象。(2)研究基于无模型自适应控制算法的航空发动机控制方案。首先设计航空发动机控制方案,主要包括主回路控制器和执行机构回路控制器。执行机构控制器采用PI控制算法。主回路控制器是在无模型自适应控制算法的基础上结合了比例控制和抗饱和方法。接着,证明了主控制器的误差收敛性问题。最后,开展数值仿真进行验证。通过仿真结果可以得出,相比于原无模型自适应控制方法,该控制方法在多工作点、存在噪声或时延环境下的稳定性和快速性均得到改善。(3)搭建硬件在环仿真系统。首先基于系统需求设计总体方案,接着对系统的硬件组成和软件方案进行详细的介绍。其中,硬件设备主要由工控机、计算机、反射内存卡和光纤组成,主要作用是为控制器、发动机相关程序提供实时运行环境,并实现控制系统内部的实时通信。软件系统主要包括模型软件和上位机监控软件,模型软件主要完成模型间的数据通信以及模型启停和运行控制等相关操作,上位机监控软件主要完成对模型输入输出数据的更新显示、控制系统输入指令的给定、运行曲线的绘制和模型软件的启停控制等。(4)开展硬件在环仿真试验。在完成系统通信验证,确保系统能够进行实时通信的前提下,将已经完成数值仿真的控制系统进行系统拆分、模型封装、注册。接着通过上位机监控软件完成模型的启动,并给定油门杆角度、飞行高度和马赫数等指令进行硬件在环试验。最后,通过分析试验结果,验证了本课题所搭建的硬件在环仿真系统的实时性以及所研究无模型自适应控制方法的工程应用价值。
其他文献
随着科学技术的飞速发展,对导航自主性与抗干扰能力提出了更高的要求,复杂干扰环境中的导航问题是当前研究的难点,而主流导航方式存在价格昂贵、抗干扰能力弱的缺点,因此亟需探究新型导航方式。目前同步定位与建图(Simultaneous Localization And Mapping,SLAM)和偏振光导航组合是一种新型导航方式,受到学者们的关注。视觉SLAM主要模仿生物视觉感知系统通过图像匹配实现导航定
在信息全球化的今天,数据是蕴含着许多信息的重要载体,如何深度挖掘数据中有价值的内容是研究者们热衷讨论的话题。在当今的大数据背景下,无论是日常生活,还是科研应用,不平衡数据随处可见,例如在医疗诊断、金融风险防范等方面,对不平衡数据的学习尤为重要。但正因为不平衡这一特性,传统的分类方法无法取得较好的结果,因此出现了各种针对不平衡数据的学习方法。目前,一种主要的不平衡学习是通过分类器与采样方法结合来提高
当今环境污染问题和化石燃料储量问题是传统能源的两大主要问题,解决方法一方面是减少传统能源的污染排放,另一方面是开发绿色环保的新能源。在目前传统能源占据能源消费大头和新能源需要时间缓冲的现状下,需要提升传统燃料的各项性能指标,比如越来越严格的排放指标。燃料的各项指标需要通过标准工况实验进行测量,比如在成品油生产过程中需要在各项工艺过程中监控各项物性指标,传统实验由于样品消耗大,耗时长,误差再现性差等
涡扇发动机以其高推进效率和低耗油率在民用和军用航空领域有着广泛应用。然而,随着飞机对推进系统性能要求的提高,涡扇发动机结构愈加复杂,系统非线性和变量间耦合特性也相应增强,因此需要探索先进控制器设计方法以满足其性能和安全要求。近年来,随着人工智能技术的发展,基于数据驱动的控制器设计方法在航空发动机领域逐渐发展。因此,本文依托某部委重点项目“XX发动机基础问题研究”,针对某型涡扇发动机开展基于数据驱动
"三线一单"管控情况评估指标体系和评估方法研究是建立健全"三线一单"成果实施评估和实施监管机制的重要基础性工作。以区域环境绩效评估的理论与方法为基础,针对四川省"三线一单"实施管控的需求,建立了四川省市(州)政府、省级政府部门落实"三线一单"管控情况的评估指标体系,提出了定量与定性相结合的评估方法。研究提出的评估指标体系和评估方法可应用于省级行政区、设区的市级行政区以及省级政府部门落实"三线一单"
近年来,随着计算机软硬件水平的不断提高和人工智能新技术的快速发展,生产生活中的自动化需求也日益提高。在自动驾驶、无人机巡航等智能化任务中,环境感知与理解是核心需求之一,语义信息在其中发挥着重要作用,因此本文从实际应用场景出发,为了满足环境解析与理解任务中对语义分割的实时性和准确性需求,系统研究了图像和视频语义分割方法。针对图像语义分割问题,本文提出了一种基于自编码器的轻量级图像语义分割模型,并命名
涡流检测技术是重要的无损检测技术之一,探头是涡流传感器的关键元件,平面螺旋线圈具有一致性好、检测精度高、环境适用性好等优点,已经在涡流传感器探头中得到广泛应用。随着检测需求增加,探测线圈的小型化、精密化、阵列化和柔性化已经成为电涡流传感器探头的发展方向,本文基于MEMS技术,为电涡流探头的设计与制作,提供新的方法。本文的主要研究内容如下:(1)分析涡流检测中探测线圈阻抗变化与耦合系数的关系,研究电
近年来,由于自动驾驶行业的兴起,点云等三维数据的处理成为了其中最具有挑战性的研究任务之一。虽然深度学习相应算法处理的二维图像已经获得了优越的性能,但是在三维数据的处理上却并没有达到相应的效果。本文则是主要针对点云分类问题,结合已有点云处理方法,提出了一种全新的直接处理点云的分类网络。为了克服点云的稀疏性问题,本文提出了一种层次化的点云分类网络,从局部不断提取并聚集点云特征。为了克服点云下采样过程中
高性能航空发动机的气动稳定性问题主要来自压气机,压气机的工作负荷能力和稳定性对整个发动机的工作效率和安全性至关重要。由于压气机中不稳定流动先兆发生机理极为复杂且变化极为迅速,因此压气机流动失稳建模与预测技术一直是压气机流动稳定性研究的关键难点。本文针对压气机失稳预测的特点和难点,创新性地引入深度学习方法,主要开展了以下几个方面的工作:1.基于压气机喘振实验数据的压气机失速特性分析。通过观察失速形态
回归模型作为数据分析领域的一个重要研究方向,已被广泛应用于医疗、航空航天和工业生产等多个领域。随着研究对象的日益复杂,为更全面刻画系统的特征,许多学者将粒计算思想引入到系统建模过程中,构造输出为不同形式信息粒的模型,相应模型不仅可以拟合建模数据,还可以为建模结果提供语义解释。本文将区间信息粒化技术用于Takagi-Sugeno(TS)模糊系统建模和可解释性分析过程中,论文主要研究内容如下:首先,本