论文部分内容阅读
现代电力系统在空间上形成了广域系统,当输电线路上发生故障时,要迅速寻找到故障点,保证系统的稳定性和供电可靠性,如今,最实用的测距方法是行波法。随着GPS技术的迅速发展,同步采样准确性越来越高,成为了电力系统统一时标的重要工具,提升了广域系统下故障测距技术的测距精度。本文首先对国内外电网的故障测距方法和广域行波算法进行了简要介绍,对输电线路的暂态特征进行了研究分析,以研究行波在电力线路中的传播特性;通过相模变换,消除电磁耦合的影响作用;通过对小波变换相关知识的研究,选择最优小波基进行小波变换,对故障行波波头识别;最后,阐述了一种确定既定系统的测量点配置算法,并在此基础上阐述了一种新型广域测距算法,并进行了相关的仿真验证。为保证在复杂输电网中实现行波测距的最大可观性和最优经济性,本文首先给出一种基于扩展双端测距原理的行波记录装置(Travelling Wave Recorder,TWR)最优配置方法。假设故障点已知,则该点到系统各个节点的最短路径也可确定,根据需至少存在一对行波记录装置能够对故障点进行定位的原则,建立一种配置优化的数学规划模型,进而确定模型求解方法,获得行波测距装置的优化配置方案。在获取优化配置方案的基础上,本文进一步给出新型广域行波故障定位算法,包含两部分:第一部分是初步故障位置的计算,第二部分是故障测距精度的提高。该算法利用曼哈顿距离从测量数据中找出准确的行波测距组合来初步计算故障位置,并通过各测量点信息与电网拓扑关系计算出故障发生时刻,并根据各测量点行波到达的时间及故障发生的时间重新计算故障位置,以提高测距精度。最后,考虑了实际系统中由环境、通信延迟等原因会造成各测量点行波到达时间上误差的问题,进而对此算法进行了容错能力的验证。本文利用PSCAD/EMTDC软件对IEEE-30、IEEE-57标准系统进行建模仿真来获取故障后同步信号,然后再使用MATLAB编程分析处理故障数据,从而最终确定故障距离。仿真结果表明,这种新型广域测距算法,测距精度高,并具有一定的容错能力。