基于回归正则化模型马尔科夫边的发现研究

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:luzhiqing
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
观察数据中发现变量之间的因果关系,解释事件是如何发生以及预测其未来发展趋势,几乎在所有学科中都有研究和应用。例如医学、生物学、经济学、物理学、社会科学等领域均把因果关系作为解释、预测和决策的基础。信息科学领域,可以使用贝叶斯网络中的马尔科夫毯(边)来表示真实世界中的因果关系。近年来,有学者采用基于回归正则化模型马尔科夫边的发现方法从观测数据中研究事件之间的因果相关性,并从理论上揭示了基于回归正则化模型的特征变量与马尔科夫边之间的关系。为了深入了解回归正则化模型马尔科夫边的发现性能以及置换检验方法对发现性能的影响,本文采用基于回归正则化模型与置换检验方法相结合的方式开展相关研究。具体内容包含下面四个方面:
  1.解剖了现有的修改岭回归模型(MRRLM-P)马尔科夫边的发现过程及其无法适用于变量共线数据集的不足,研究了变量共线与协方差奇异之间的关系,并提出一种新变种岭回归模型(NVRRLM-P)。
  2.继续围绕MRRLM-P的不足,将三种经典回归正则化模型(岭回归模型、LASSO模型和弹性网络模型)与置换检验方法结合,以实证的方式在低维数据集上考察他们马尔科夫边的发现性能并与MRRLM-P比较。
  3.在回顾多元回归模型假设检验的基础上,讨论了置换检验的三种不同实现方法并分析了其在正则化模型中的表现形式及应用效果。其中,两种实现方法首次用于正则化模型马尔科夫边的发现,拓展了置换检验方法的应用范围。
  4.以一个具体的土壤近红外光谱分析应用实例,借助马尔科夫毯(边)理论对土壤有机质及麦角固醇含量的光谱矩阵进行“降维”,并使用最小二乘支持向量机(LS-SVM)和LASSO-P建立校正模型。
  研究结论:新变量岭回归模型能够很好解决MRRLM-P不能适用于共线数据集的缺陷;在低维数据集上,存在与MRRLM-P有相近的马尔科夫边的发现性能的经典正则化模型;置换检验新拓展的二种实现方法略逊于先前的实现方法;马尔科夫毯(边)的理论能有效对光谱信息矩阵进行“降维”操作,两种校正模型均能很好地反应检测对象对光谱信息的依赖性(相关系数大于0.90)。
其他文献
脂联素(adiponectin,ADP)是先天免疫的调节剂,在哺乳动物的炎症反应和新陈代谢过程中发挥重要的作用。然而,ADP在鱼类免疫系统中的调控作用还知之甚少。在本文中,我们首次克隆出香鱼(Plecoglossus altivelis)的ADP基因并获得其cDNA序列,命名为PaADP。多重序列比对结果显示出香鱼的ADP呈现出ADPs的典型特征。系统进化树分析的结果表明PaADP与虹鳟(Onco
学位

三疣梭子蟹(Portunus trituberculatus)是一种重要的大型海洋经济甲壳动物,养殖面积广,是我国三大主要养殖蟹类之一。三疣梭子蟹性腺发育是繁育的基础,卵巢是卵子产生的器官,卵巢发育的质量直接关系到产卵量、受精率、受精卵的孵化率、后代成活率及质量等指标。Wnt信号通路是一个复杂的负向调节信号通路,参与多种生命活动,并且在哺乳动物中已经证实其在卵巢发育过程中有重要作用。目前为止,尚未
[db:内容简介]
The recently proposed coprime array, as an example of a sparse array of antennas, could produce more effective virtual sensors (degrees of freedom (DOFs)) than the number of actual sensors being used.
学位
Underwater Acoustic(UWA)Communication uses acoustic waves to transmit and receive data under the water.Underwater radio waves suffer from high attenuation.Optical waves suffer from heavy scattering.Ac
学位
Detection, identification and intelligence are the blistering topics and requirements nowadays in modern era. As artificial intelligence is going to seizure the whole world soon, most of the explorati
学位
汉字是世界上使用最多的文字,汉字识别在残疾人无障碍阅读、文献自动录入、邮件分拣、银行票据处理、证件识别等领域有着重要的应用价值。汉字数量巨大,手写风格各异,并且汉字中存在大量的形近字,导致脱机手写汉字识别一直存在准确率偏低的问题。近年来,深度学习发展迅速,在模式识别、自然语言处理、语音识别等领域都取得了不错的成绩。因此,本文采用深度学习的方法对脱机手写汉字识别进行研究。针对汉字识别大分类问题,采用
图像超分辨率技术是近年来计算机视觉领域的研究热点之一,其可以有效地弥补硬件成像设备精度的不足,以较高的还原度呈现出真实场景。图像超分辨率技术在安防、遥感、医学和高清显示等领域有着广泛的应用场景和需求。本文围绕提高图像超分辨率性能展开研究,并在基于学习的超分辨率方法上从提升学习字典训练效率和提高图像重建质量两个方面进行改进。本文首先针对传统字典训练效率低的问题,提出一种新的图像块相似性判断方法及结构
学位
随着我国新消费时代的到来,消费模式开启了新格局,品质消费备受追捧。受到新消费热潮的影响,生鲜企业也在不断转型升级,生鲜超市等新兴生鲜消费渠道逐渐增长。由于生鲜供应链具有配送成本高、仓储难度大、产品损耗率高等特点,大部分涉足生鲜的企业都处于亏损状态。如何控制供应链成本,对生鲜供应链的选址、库存和路径进行集成优化是尤为重要的。本文正是基于此背景,在研究以超市为代表的现代生鲜供应链体系基础上,综合直送模
学位
聚合博弈是成本仅依赖于其自身策略和关于所有个体的聚合策略的一类重要博弈.其在自然科学、经济学和工程科学等领域中广泛应用.特别的,在工程科学中,无线通信、交通系统、智能电网等方向的聚合博弈问题得到了越来越多富有成效的研究.博弈理论的关键是纳什均衡问题的研究.因此,求解纳什均衡的算法受到了广泛关注.近年来,随着大规模通信网络和分布式技术的发展,很多研究学者致力于分布式纳什均衡算法的研究.相比于传统的集
学位