【摘 要】
:
非晶合金,因为具有独特的长程无序原子结构而具有高强度、高硬度、大弹性应变极限、耐磨耐腐蚀、铁基成分软磁性能优异等诸多优点,在航天航空、国防军工、生物医药、消费电子、体育器械和珠宝首饰等领域具有广泛的应用或应用潜力,是一种迅速发展的新材料。另一方面,激光作为一种先进技术已被广泛应用于医疗、汽车、航天、科研等众多领域。激光技术经过几十年的发展,已经在氧化物玻璃、陶瓷、钛铝合金、不锈钢等材料上取得了广泛
【机 构】
:
中国科学院大学(中国科学院物理研究所)
【出 处】
:
中国科学院大学(中国科学院物理研究所)
论文部分内容阅读
非晶合金,因为具有独特的长程无序原子结构而具有高强度、高硬度、大弹性应变极限、耐磨耐腐蚀、铁基成分软磁性能优异等诸多优点,在航天航空、国防军工、生物医药、消费电子、体育器械和珠宝首饰等领域具有广泛的应用或应用潜力,是一种迅速发展的新材料。另一方面,激光作为一种先进技术已被广泛应用于医疗、汽车、航天、科研等众多领域。激光技术经过几十年的发展,已经在氧化物玻璃、陶瓷、钛铝合金、不锈钢等材料上取得了广泛应用,在非晶合金上也有许多激光应用研究案例,例如非晶合金的激光焊接、激光涂层、激光熔覆、激光表面处理、激光增材制造等。尽管如此,有关非晶合金与激光相互作用的论述目前甚少,亟需对非晶物理和激光物理这一交叉方向进行系统研究。因此,阐明非晶合金与激光作用机理对非晶合金的加工和应用具有重要的指导意义。本论文研究了非晶合金与激光的相互作用,开发了激光在非晶合金材料上的多种研究途径。脉冲激光作为一种重要的激光工作模式,因为激光与材料的相互作用时间短,有利于避免激光处理导致的非晶合金的晶化行为,所以适合应用于非晶合金的激光加工。因此本论文使用纳秒脉冲激光以不同的处理方式处理不同体系的非晶合金,从而产生不同的作用效果。本论文的第一部分工作是研究纳秒脉冲激光对非晶合金条带焊接作用及机理。非晶合金条带在激光焊接后可以实现复杂结构成型,如手环、莫比乌斯环。通过优化离焦量和激光功率因子,非晶合金焊接接头的断裂强度可以达到非晶合金条带样品断裂强度的70%-90%。非晶合金激光加工的工艺相图的建立有助于理解激光在非晶合金上的作用机理和理解激光处理非晶合金晶化与非晶化的机制,并通过对不同厚度的非晶合金条带进行焊接分析,可以得到最优激光加工功率的体密度参数(104-105 W mm-3)。第二部分工作是利用纳秒脉冲激光在Fe78Si9B13非晶合金条带上通过自屈曲机制实现自成型。利用激光自成型,可以在金属条带上实现类含羞草或风车的结构和功能,使其在外力或外场条件下改变形态,实现非晶合金独特的仿生功能特性。通过改变激光工艺参数,可以控制条带在自屈曲处的曲率半径。利用磁光克尔显微镜可以观察到Fe基非晶合金条带在激光线周围的磁畴分布,阐明激光线方向存在周期性变化的拉应力和压应力机制。用能量最小化原理解释了激光自屈曲现象。第三部分工作是利用纳秒脉冲激光处理Zr基非晶合金表面实现激光着色,研究了激光与非晶合金相互作用产生结构色机理。阐明了由于激光在非晶合金表面诱导产生的纳米多孔结构,发生表面等离激元共振,从而产丰富多彩的结构色。通过调节离焦量、扫描次数、激光线间距、功率因子、重复频率、扫描速度等激光处理参数,可有效控制非晶合金表面的颜色。对激光着色后非晶合金的微观结构、反射率、反射谱、结构稳定性、耐腐蚀性和疏水性也进行了系统地表征。实验结果表明,激光对非晶合金处理产生的表面等离激元结构色是一种混合色,且颜色种类多。这种结构色具有分辨率高、稳定性好、耐腐蚀、抗氧化、疏水性能好、着色面积大、无污染、无角度依赖性、着色速度快和着色成本低等优点。与晶态合金的纳秒激光氧化色相比,非晶合金的纳秒激光等离激元结构色具有颜色种类更丰富、稳定性更好、分辨率更高和可控性更强等特点。本论文在研究激光与非晶合金的相互作用机制及激光加工非晶合金工艺方面具有创新和指导意义。
其他文献
锂离子电池由于其优异的性能(高能量密度和长循环性能)被广泛应用于各个领域。正极、负极、电解液和隔膜是锂离子电池最重要的组成部分。其中隔膜起到了分离正负极,绝缘电子和导通锂离子的关键作用。目前商业化锂离子电池使用的隔膜均采用聚烯烃类隔膜,例如聚丙烯/聚乙烯(PP/PE),或者基于聚烯烃隔膜改性而来。这是由于聚烯烃类隔膜力学性能好,电化学性能、化学性能稳定,易于量产且价格低廉。但是由于聚烯烃PP/PE
磁镊是单分子力谱技术之一,具有高通量以及对实验样品损伤小等优点。它通过施加力将单个分子的内部结构打开,从而在单分子的水平上研究样品的稳定性机制以及可能存在的内部结构。本文主要是使用磁镊技术对单个核小体展开的研究。论文工作主要取得了以下进展。(1)我们发现组蛋白H2AK119的泛素化会加强核小体的稳定性。每个核小体有两个H2A组蛋白,当两个H2A组蛋白都泛素化后,核小体外圈打开力由5pN增加到20p
纳米结构的锰氧化物因其高能量、高安全性、高热力学稳定性、低电势以及低成本等优点,不仅在传统储能器件如锂离子电池等领域备受关注,同时也成为一些新型储能器件如锂离子电容器、锌离子电池等领域的研究热点。然而,纳米结构锰氧化物存在着导电性差、体积变化大以及结构与界面稳定性不佳等问题。具有独特电子结构和空间构型的石墨烯和碳纳米管,不仅能通过在导电性、电荷传输能力、力学性能等方面的突出优势成为解决上述锰氧化物
量子功能材料由于电子的电荷、自旋、轨道和晶格等量子序之间的相互耦合和竞争,从而呈现出各种新奇的量子效应和丰富的物理现象。本论文主要介绍了几种量子功能材料的单晶生长和物性研究,包括“111”型铁基超导体LiFe1-xCoxAs和NaFe1-xVxAs的单晶生长和相关物性研究,新发现的拥有“沙漏型”表面态的拓扑绝缘体材料KHgAs的单晶生长和压力效应研究以及与‘111’型铁基超导体同构的Fe2As化合
新兴宽禁带半导体材料氧化镓(Ga2O3)具有室温下4.5~5.0 e V的直接带隙、吸收系数高、稳定性好、制备工艺简单、生产成本低廉、耐高温高压以及强辐照等优势,是一种天然深紫外探测材料,在空间通讯、紫外探测、生物医药和气体监测等诸多领域具有重要的应用前景。然而,目前Ga2O3基紫外光电探测器和气体传感器的研究仍处于起步阶段,相关性能指标仍需根据具体应用场景进一步优化。此外,随着柔性电子学的迅猛发
透射电子显微镜是一种用于在微观尺度下成像的精密科学仪器,目前已经在材料学、凝聚态物理、结构生物学等领域得到了广泛的应用。利用透射电子显微镜,近几十年来人们取得了诸如碳纳米管、准晶等重要发现。透射电子显微镜的原理类似光学显微镜,但由于采用电子光源,分辨率远远优于光学显微镜(光学显微镜的分辨率约为300 nm),目前可达0.039 nm。除了具有极佳的空间分辨率,透射电子显微镜也集成了晶体结构、电子结
铅卤钙钛矿(lead halide perovskites,LHPs),作为材料领域一种重要的光电探测器、激光、发光二极管(LED)等,由于其优异的光电性能,逐渐成为一种低成本的光学材料解决方案。全无机卤化铅钙钛矿量子点(LHPs QDs)由于其优异的发光性能和量子限域效应的优势,以及其相比于有机-无机杂化半导体量子点而言,更好的稳定性,使其成为一种具有更广泛应用前景的光电子材料。半导体量子点材料
氢气是有望取代化石燃料支撑未来高速发展的清洁能源载体,但是氢气的可持续生产仍然是一项重要挑战。作为极具前景的产氢途径,电解水是指在一定电压下阴极发生析氢反应、阳极发生析氧反应的电化学过程。本论文所关注的析氢反应需要使用高效的催化剂在较小的能量输入下加速反应的进行。Pt基催化剂具有优异的析氢反应催化性能,但这类材料储量稀少、价格昂贵,这使开发成本低但效率高的催化剂成为了重要的研究目标。尽管过去几十年
液液相变是指一种液体转变为另一种液体的一级相变,在几乎所有类型的液体中都可能存在。研究液液相变对于理解玻璃和液体的本质具有重要的科学意义。本论文从序参量、热力学模型和动力学角度详细阐述了液液相变的基本特征,着重分析了多种非晶合金形成体系中可能存在的液液相变(或非晶-非晶转变)。经典液体理论尽管可以通过两点密度关联函数来解释液体中简单的动力学行为,但难以解释液体中复杂的动力学行为和由非密度序参量驱动
随着物联网与人工智能概念的逐渐普及,可穿戴式柔性电子器件于近些年展现出了爆发式的增长趋势。与传统刚性衬底(硅、蓝宝石和玻璃等)上的半导体器件不同,柔性电子器件因其可弯曲、质量小、生物相容性好、力学性能可调控等特点被广泛应用在生物医疗监测、环境监视、通讯、柔性显示以及人机交互等领域并深刻影响着我们的日常生活。目前柔性电子器件的能量供给一般都来源于电池,相比于微型的柔性电子器件,无论在体积还是在重量上