论文部分内容阅读
针对中国股市预测问题,本文主要开展了以下工作: 1、研究了基于基本面的系统运筹式股票市场预测。将股票市场对象视为由多种要素和子系统构成的一个复杂系统,在全面、整体地对股票市场利益各个方面及其相关因素和条件的规律性认识的基础上,从投资主体的目的、需要、能力以及客观环境所提供的条件出发,有效地预测股票市场未来发展趋势和现在股票市场波段行情演化状况。 2、研究了现代预测方法在股价预测中的应用。针对传统分析方法的不足,分析了股价预测的结构及标准流程,从线性方法到非线性方法,对现代预测方法中的回归预测法、神经网络预测法、模糊预测法、状态空间预测法在股市预测中的应用进行了分析、总结和评价。 3、研究了基于状态空间表示的组合建模预测方法。根据由趋势、平稳自回归和非线性协方差随机变量组合而成的特定状态空间形式,提出了股票专用的预测估计方法。根据股市收盘价可以准确确定的特点,对这类随机问题进行了简化。该方法与普通卡尔曼预测方法相比较,能够提高预测精度,减缓了预测估计的发散。大量股市数据仿真计算和大盘预测法比股市常用的普通卡尔曼预测方法更有效。 4、研究了状态空间预测法在证券分析系统中的应用。现行的证券分析软件很多,其侧重点各有不同,各有优劣,对于技术面分析智能性不够,简单的指标罗列使一些不懂这些指标的投资者望而却步。利用大智慧证券信息平台原有的智能选股功能,把基本面选股、技术指标选股有机组合,并嵌入状态空间预测法,适当考虑消息面影响,这样无需重新编制指标、修改参数,就可使预测精度进一步提高,并最终实现了从对大盘指数预测到个股预测的有效运用,证明了股价预测模型的可行性及扩展性。