【摘 要】
:
临界热流密度是核反应堆安全运行中的重要参数,由于临界热流密度既受到流动参数的影响,又受到沸腾传热过程中多种潜在的相互作用的不稳定机制的影响,因此至今对于临界热流密度的物理机制并没有统一的说法。液膜厚度作为临界热流密度机理研究中最重要的参数之一,其测量一直存在较大的问题。本文基于电学法进行了加热条件下液膜厚度直接测量方法的实验研究,开发出直接的液膜厚度测量方法,为探索临界热流密度物理机制提供有效的手
论文部分内容阅读
临界热流密度是核反应堆安全运行中的重要参数,由于临界热流密度既受到流动参数的影响,又受到沸腾传热过程中多种潜在的相互作用的不稳定机制的影响,因此至今对于临界热流密度的物理机制并没有统一的说法。液膜厚度作为临界热流密度机理研究中最重要的参数之一,其测量一直存在较大的问题。本文基于电学法进行了加热条件下液膜厚度直接测量方法的实验研究,开发出直接的液膜厚度测量方法,为探索临界热流密度物理机制提供有效的手段。电学法由于其成本低、采样频率高、适用范围广等原因,正成为液膜厚度测量的主要研究方法。本文利用多物理场仿真模拟软件COMSOL对电极对的形式、尺寸等参数进行模拟研究后,将电极设为同心圆环的形式,将发射电极的直径确定为2 mm,接收极内径确定为2.4 mm,接收极外径确定为3.2 mm。通过合理的布线,将液膜厚度测量传感器布置在印刷电路板上,形成5×6的矩阵。为避免电极对的电化学反应,发射极的激励信号为幅值±5 V,频率为100 k Hz的高频方波。液膜厚度信号的采集通过自编的LABVIEW程序和基于FPGA所设计的液膜厚度采集板卡实现,液膜信号经放大、采样保持、模数转换后通过串口输送到上位机。液膜厚度标定基于自编的程序和51单片机及步进电机实现,通过生成已知厚度的液膜来进行标定。此外,由于生产工艺等限制,每一传感器对应的特性曲线并不一致,因此需要对所有传感器都进行相应的液膜厚度标定实验,由于加热会引起实验工质物性参数的变化,本文利用多物理场仿真软件COMSOL对电导率影响最大的参数进行数值模拟后发现,实验工况范围内,电导率对信号的影响最大。最终通过利用实验工质的电导率物性测量实验得到的电导率—温度曲线来减小电导率等物性参数对液膜厚度标定和测量的影响。结合液膜厚度测量实验中的电信号曲线、电导率物性测量实验中的温度-电导率曲线以及液膜厚度标定实验获得的液膜厚度—电信号曲线,发现液膜厚度测量传感器可测量液膜厚度范围为20μm到1000μm,其中最小可测量液膜厚度为22μm,最大可测量液膜厚度为998μm。
其他文献
复杂网络正以社会网络、引文网络、生物网络等形式在大量实际应用中变得无处不在。复杂网络的分析在许多学科及各种应用中都起着至关重要的作用,如节点分类、链路预测、个性化推荐等。然而,大规模的网络分析仍是一个挑战。近年来,网络表示学习(Network Representation Learning,NRL)作为新的学习方法能够将网络节点嵌入到低维向量空间,被广泛应用到网络分析中。属性网络,即节点或边含有属
我国燃煤电厂已基本完成脱硝改造,传统粉煤灰已基本被脱硝粉煤灰所取代,脱硝粉煤灰在应用于水泥混凝土时出现了一系列工程问题,阻碍了脱硝粉煤灰的资源化利用,而脱硝副产物硫酸氢铵的存在,是导致脱硝粉煤灰建材资源化利用中问题频出的主要原因。现有研究大多为脱硝对粉煤灰自身的性质变化,而脱硝粉煤灰作为矿物掺合料应用于水泥混凝土的系统研究还比较缺乏,同时硫酸氢铵作为一种硫酸盐,其与碱金属硫酸盐最大的不同是其含有的
随着现代工业发展以及人类生活水平的提高,化石能源消耗激增同时伴随着大量温室气体的排放,产生的温室效应是目前人类面临的巨大挑战之一。核电由于其能量密度高,占地面积小,温室气体排放量极低,是替代化石能源最可行的方式之一。核燃料后处理尾气中含有大量需处理的放射性气体,如碘(I2)、碘甲基(CH3I)、氪(Kr)和氙(Xe)的同位素等,其中因Xe和Kr具有广泛的商业用途,对Xe/Kr混合物的吸附分离显得格
我国已进入由钢铁大国到钢铁强国转变的阶段,碳中和目标的提出使中国钢铁行业面临巨大的机遇与挑战,要使钢铁更好地用于汽车、家电等领域,解决防腐蚀的问题尤为重要,热浸镀锌对于提高钢材的耐蚀性能有着显著的作用。Zn-Al-Mg镀层钢板,其镀层区别于传统的合金化镀层,拥有更好的耐蚀、耐磨性和焊接性能。本文以1mm厚DC51D+ZM锌铝镁镀层钢板为研究对象,通过正交试验、规律试验、工艺窗口试验,以及电极磨损、
为了提高陆军单兵作战能力,弹药减重至关重要;药筒作为弹药的重要组成部分,材料由黄铜、钢发展到现在的轻质合金,目前轻质超高强铝合金药筒成为武器轻量化研究的主攻方向。铝合金药筒的研究并不成熟,首先,铝合金种类复杂,选择合适的原材料难度大;其次,药筒在射击过程中易出现烧蚀开裂缺陷;最后,铝合金有明显的腐蚀开裂倾向,长储性能面临着较大的威胁。针对某企业生产的铝合金药筒在射击试验中出现严重的烧蚀破裂问题,本
随着数字图像处理技术的快速发展,作为数字图像处理基础内容的边缘检测技术,在机器视觉、人脸识别、目标跟踪、工业检测等领域有着越来越广泛的应用。边缘检测技术的核心是边缘检测算法,基于Sobel算子的边缘检测常常应用于实际工业检测中,但目前大多数边缘检测都是基于PC端的软件串行处理,难以满足系统实时性要求。基于FPGA图像处理的边缘检测技术充分利用软硬件联合处理优势,可以大大提高边缘检测速度,同时,通过
得益于碳化硅(Silicon Carbide,SiC)材料更高的禁带宽度、电子迁移率、击穿场强和工作温度,SiC功率器件具有更高的开关频率、更低的功率损耗、更高的耐受结温,能有效提升电力电子装备的变换效率和功率密度,在新能源发电、交通电气化、国防军工等领域具有不可替代的作用。为了适应SiC功率器件的优异性能,急需低感、低热阻和高可靠的先进封装技术。双面散热(Double-sided Cooling
萘普生(NPX)是一种典型的抗炎和抗风湿药物,被广泛地用于治疗疼痛和类风湿性关节炎。由于其应用的普遍性和生物难降解性,目前在地表水、地下水、污水处理厂出水甚至饮用水中均检测到了NPX,浓度介于ng L-1~μg L-1之间。研究发现NPX对人体健康具有潜在的危害且传统水处理技术的去除效果较差。在本研究中,将硫酸根自由基高级氧化技术(SR-AOP)与可见光光催化技术进行联用,实现了对NPX的协同高效
随着科技的发展,机器人已经逐渐进入人类生产生活的各个领域。其中,移动机器人极大扩展了机器人作业的范围,增加了灵活性。相较于其他类型的移动机器人,履带式移动机器人具有适应全地形、牵引能力强等优点,能够工作在危险恶劣的环境下,在农业、军事等领域应用众多,一直是国内外关注的一个重点。本文以履带式移动机器人为研究对象,基于强化学习理论,对其在未知和不确定环境下的控制问题展开研究。主要完成的工作如下:(1)
当今社会,能源危机是影响现代社会发展的严重问题。然而,目前能量的转换及利用方式,导致在生产运行过程中产生大量的余热废热。回收和循环利用余热可以提高我们社会的能源利用效率,这使得温差发电技术越来越引人关注。在温差下产生电压差的热电效应是一种适用于余热废热利用的手段。利用热电效应的余热利用技术具有无运动部件、无噪音、无化学反应和零气体排放等特点,具有很好的应用前景。根据载流子的类型,热电材料可以分为离